vcdm | Universidad Carlos Il de Madrid

Master Degree in Statistics for Data Science
2020-2021

Master Thesis

“Application of Convolutional Neural
Networks in the Multiple Testing
Problem”

César Antonio Conejo Villalobos

Supervisor:
Stefano Cabras
Madrid. September 21, 2021

AVOID PLAGIARISM

The University uses the Turnitin Feedback Studio for the delivery of student work. This program

compares the originality of the work delivered by each student with millions of electronic resources

and detects those parts of the text that are copied and pasted. Plagiarizing in a TFM is considered a
Serious Misconduct, and may result in permanent expulsion from the University.

©0Kle)

This work is licensed under Creative Commons Attribution — Non Commercial — Non Derivatives

SUMMARY

Multiple Hypothesis testing consists of a series of statistical procedures for solving
hypothesis tests on high-dimensional data marginally. Several approaches have been de-
veloped for dealing with this statistical problem. Classical methods consist of defining and
controlling a specific error rate. These methods usually rely on the p-values for collecting
the evidence against the null hypothesis. Other alternatives have also been developed un-
der a semi-supervised approach. In this case, we solve the large-scale testing using a null
train sampling collected via endogenous or exogenous mechanisms. In this project, we
combine both approaches. Employing simulations, we explore the possibility of handling
cases where the user knows and controls the ground truth for solving multiple hypothesis
testing problems in a supervised framework. Starting with calibrated p-values under the
null hypothesis, we represent the p-values in terms of odds, converting them into lower
bounds of Bayes Factors. Additionally, we take a step further, creating a matrix of the
relative evidence among tests as the previously ordered minimum bounds quotients. This
matrix representation is considered analogous to an image. With these ingredients, we
train Convolutional Neural Networks to determine if this framework can detect the cases
where the null hypothesis is rejected. We explore the ability of the CNNs to correctly
classifying the hypothesis based on two primary examples. First, we study the efficiency
of a diet applied to a female mice sample under several scenarios. Then, we explore the
mean difference of two independent populations sampling from the normal distribution.

Keywords: Multiple Hypothesis Testing (MHT), p-value, Lower bound Bayes factors
(LBBFs), Convolutional Neural Networks (CNNs), Multi-Label classification, Precision-
Recall Curve, Area under Precision-Recall curve (AUPRC).

il

DEDICATION

I want to dedicate this work to my parents, which would have been extremely difficult
to complete this project without their support.

I thank my father, Jorge, for motivating me to do my tasks and duties with excellence.

I thank my mother, Yanet, for sharing her teachings about perseverance.

Quiero dedicar este trabajo a mis padres. Sin su apoyo, hubiera sido extremadamente
dificil completar este proyecto.

Agradezco a mi padre; Jorge, por motivarme a realizar mis tareas y deberes con exce-
lencia.

Agradezco a mi madre; Yanet, por compartir sus ensefianzas sobre la perseverancia.

CONTENTS

1. INTRODUCTION. e e 1
2. MULTIPLE HYPOTHESIS TESTING 4
2.1. Hypothesistesting o i it 4
22, P-values. 8
2.3. Multiple Testing e 9
24. Error Procedures 11
2.4.1. Family Wise ErrorRate 11
2.4.2. False Discovery Rate. 12
2.5. Performance metrics 13
2.6. Simulation case 1: Female micediet. 16
2.7. P-valuesin a Bayesiancontext 21
2.8. Proposal: P-values representation. 23
3. CONVOLUTIONAL NEURAL NETWORKS. 26
3.1. Artificial Neural Networks, 26
3.1.1. Fundamentalsof ANNs 26
3.1.2. Hyperparamerter tuning in Neural Networks 28
3.1.3. Overfitting e 31
3.2. Convolutional Neural Networks 32
3.2.1. Convolutional layer 33
32.2. Pooling Layer. 35
3.3. Simulation case 1: Female micediet. 36
4. SIMULATION CASE 2: NORMAL POPULATIONS. 44
5. CONCLUSION 46
6. APPENDIX 48
6.1. Appendix I: The t-testformeans 48
6.2. Appendix II: Simulation 1.3. Female mice dietplots. 49

BIBLIOGRAPHY. e 50

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
29

3.1
32
33
34
3.5
3.6
3.7
3.8
39
3.10

4.1

6.1

6.2

6.3

LIST OF FIGURES

Methods for controlling errorrates
Simulation 1: Female mice body weight distribution
Simulation 1.1: Power of t-test: Female micediet
Simulation 1.1: Effect size index: Cohen’sd
Simulation 1.2: Distribution of p-values
Simulation 1.2: FDR for two control levels
Simulation 1.2: Performance metrics
Simulation 1.2: Distribution of LBBFs values less thanone

Simulation 1.2: P-value representation

Simple and deep Neural networks
Principal components of an Artificial Neural Network
Convolutional layers oo
Pooling layers
Simulation 1.3: Two independent MHT problems
Simulation 1.3: Train and test sets for m = 100 features
Simulation 1.3: Neural networks architectures for m = 100 features
Simulation 1.3: Comparison of performance for m = 100 features
Simulation 1.4: Neural networks architectures for m = 1000 features . . .

Simulation 1.4: Comparison of performance for m = 1000 features
Simulation 2: Normal populations

Simulation 1.3: Comparison of performance for m = 100 features (Ran-
domLBBForder)

Simulation 1.3: Comparison of performance CNN for m = 100 features
(Approach by components)

Simulation 1.3: Comparison of performance for m = 100 features (Ap-
proach by effectsize)

2.1
2.2
2.3
24
2.5
2.6

3.1
3.2
33
34
3.5

LIST OF TABLES

Choosing a hypothesistest 5
Outcome of unitary hypothesis testing 6
Outcomes of testing m null hypothesis 10
Simulation 1.2: UHT, Bonferroni, and BH procedures 19
Simulation 1.2: Cumulative number of rejections 20
Calibration of p-values in a Bayesian context 23
Simulation 1.3: Results under BH procedure and micro-averaging 37
Simulation 1.3: Cumulative rejections for m = 100 features 39
Simulation 1.3: Type-I error rate for m = 100 features 40
Simulation 1.3: Type-II error rate for m = 100 features 40
Simulation 1.3: Performance AUPRC for 20 simulations 42

1. INTRODUCTION

In modern statistics, multiple testing focused on high-dimensional data has become an
essential topic of study. Multiple hypotheses testing (MHT) corresponds to a collection
of statistical procedures in which for a set of m > 1 null hypotheses, we want to study
each statistical test individually. As a result, we obtain a partition of the m hypotheses
into two sets for the cases where the null hypothesis is true and false of sizes m, and
my = m — my respectively. The goal of MHT procedures is to discover the number of
statistically significant features with the best accuracy while incurring a low proportion
of false discoveries.

Typical applications of MHT methods come from biological and biomedical sciences.
With the appearance of new technologies such as high-throughput systems and detectors,
it is possible to obtain millions of samples of the physical activity for a specific organism.

1

For example, microarrays allow researchers to detect gene expression’ measurements of

m > 1 levels per sample.

There are several approaches related to MHT. The first approach involves marginally
applying the classical hypothesis test with some level of significance @. However, this
method can result in several Type-I errors (False Positive, False Discovery) or Type-II
errors (False Negative). Additionally, with the increasing number of the statistical test
m, the number of errors occurring by chance also increases. Consequently, diverse tech-
niques have been proposed to estimate and control an informative error rate in the setting
of multiple comparisons. The typical errors rates controlled in MHT are based on two dif-
ferent approaches: the family-wise error rate (FWER) and the false discovery rate (FDR).

In the case of the FWER, the procedure ensures that a specific threshold bounds the
probability of committing a single false-positive rejection. Although several techniques
control the FWER, the traditional system under this approach is called Bonferroni’s cor-
rection. However, these methods have the disadvantage of being considerably restrictive,
especially in the cases where m is large. On the other hand, the FDR techniques control
the rate at which the significant hypothesis is genuinely null. The philosophy of this ap-
proach consists of allowing a few false positives, as long as the majority of rejections are
accurate. As a representative of this approach, we consider the Benjamini and Hochberg
(BH) procedure.

Indistinctly of the three previous approaches, these MHT procedures use the p-value
as the typical method of studying the evidence provided by the statistical tests from the
data. Informally, the p-value represents a measure between O and 1 of the evidence against
the null hypothesis. A typical scale of the evidence against Hy is based on cut-offs for the
p-value. Standard approaches consider a p-value of 0.01 as robust evidence against H

Gene expression is the process in which the cells copy the DNA into the RNA.

and the range from 0.01 to 0.05 for solid evidence against the null hypothesis. Given
the dependency of the p-value over the sample, the p-value is a random variable whose
distribution is uniform if Hy holds and concentrated around zero in the case that H; holds.
Additionally, the p-values are calibrated when the theoretical sampling null distribution
of the p-values is uniform.

Traditional MHT settings assume that the m p-values are calibrated based on the
U(0, 1) distribution. However, several authors identify several disadvantages based on
this assumption. For example, Cabras, declares that the settings where the p-values
are calibrated are very few and apply only to simple statistical models. Irizarry and Love,

advises that when we test many hypotheses simultaneously, even a tiny p-value cut-
off can result in many false positives with high probability.

Consequently, given the difficulties of using the p-value, the statistical theory provides
other mechanisms for studying the evidence provided by the data. Based on a Bayesian
perspective, the Bayes Factors (BFs) is a likelihood ratio of the alternative hypothesis
against the null hypothesis. Nevertheless, according to Cabras, , fully defined and
interpretable BFs require heavy computational techniques for being adjusted. Conse-
quently, authors like Sellke et al., had proposed methods (with a low computational
cost) for computing a lower bound on the odds of the null hypothesis against the alter-
native. Under this approach, starting with a set of calibrated p-values, we can obtain an
infimum bound of their respective Bayes factors.

On the other hand, authors such as Mary and Roquain, warn about the MHT
methods’ dependence on the knowledge of the null distribution. As a result, they had pro-
posed techniques based on a semi-supervised context. In this case, there is no necessary
complete knowledge of the null distribution, but a sample from this null distribution is
required. This sample from the null distribution is called by the authors the null training
sample (NTS). In practical situations, Mary and Roquain, identifies three possible
scenarios where it is possible to have a selection of the null distribution:

e Blackbox null sampling: A sampling machine can simulate according to the null
distribution.

e The null sample is given: Previous experiments or expert criteria provide a fixed
number of samples from the unknown null distribution.

e The Null sample is learned from data: An independent part of the data available in
the experiment is used as NTS of the unknown null distribution.

During this project, we will explore an MHT procedure based on the previous ideas.
Using the representation of the p-values as odds provided by Sellke et al., , We use a
sampling mechanism for learning from data. However, instead of a semi-supervised set-
ting, we will explore this new procedure under a full supervised learning context. Specifi-
cally, we take a supervised approach based on multi-label classification. We intend to map

2

an input X to represent the evidence provided by a specific dataset to a binary response
vector Y. The response vector will be assigned with a value of 1 when the alternative
hypothesis is true and O when the null hypothesis is true.

In order to deal with our experiments, we will use Deep Learning tools, especially
Convolutional Neural Networks (CNNs). CNNs are known to have remarkable perfor-
mance in image classification and object detection. As a result, we consider an analogous
image representation of the p-values used as input for the CNNGs.

Like disclaimer, we do not intend to declare the used architectures in this project as the
cutting-edge application of Deep Learning in the MHT field. Some authors like Ferrari
Dacrema et al., warn about the risks of including specific architectural components
in other applications domains outside Deep Learning. However, we found an interesting
intersection between the ideas of Mary and Roquain, , especially the cases where the
null sample is given or learned from data, and the ideas of the machine learning method
called transfer learning.

In summary, this project deals with two major topics. Chapter 2 will review the rel-
evant concepts concerning the MHT procedures, starting with the classical hypothesis
testing theory and finishing with the image representation of the p-values. This chapter
will focus on detecting the possible difference between two independent groups using sta-
tistical tests. Next, chapter 3 reviews the main features of the CNNs, especially the two
essential building blocks of a CNN architecture: Convolutional and pooling layers. We
conclude this section with a simulated exercise applied to the efficiency of a diet based on
a sample taken from a female mice population by examining the difference in the body
weights of two groups. In chapter 4, applying the same architecture of the previous case,
we study a simulation based on two normal populations. Finally, chapter 5 provides some
relevant conclusions about this new methodology.

Concerning the software, the language used in this project is Python, especially the
libraries Pandas, NumPy-SciPy, and scikit-learn. For training and calibrating the CNNss,
we use the Keras API and TensorFlow. Additionally, we use the Google Colaboratory
as notebooks for programming. Eventually, some of the architectures used in this project
respond entirely to the restriction of the computational power provided by Google?. The
code is available in this GitHub repository: Application_CNN_MHT_problem:s.

213 GB of RAM, extendable to 12 hours of GPU use. See the documentation.

https://www.python.org/
https://pandas.pydata.org/
https://numpy.org/
https://www.scipy.org/
https://scikit-learn.org/stable/
https://keras.io/
https://www.tensorflow.org/
https://colab.research.google.com/notebooks/intro.ipynb
https://github.com/
https://github.com/cconejov/Application_CNN_MHT_problems
https://research.google.com/colaboratory/faq.html

2. MULTIPLE HYPOTHESIS TESTING

2.1. Hypothesis testing

Hypothesis testing is a statistical technique that detects features of some population (or
populations) based on sample information. Typical applications of hypothesis testing are
connected to the confirmation of certain conjectures that can be made about the param-
eters of the distributions or directly over the statistical models. When the researcher or
statistician decides to use this statistical inference procedure, it is essential to consider two
significant facts. The first issue is associated with the question: When to use or employ
a hypothesis test? The second point is related to the question: Which hypothesis test to
choose?

To answer the first interrogation, we can say that several authors® recommend using
a hypothesis test only when the main objective of the analysis is to test a well-defined
hypothesis. In other circumstances, others statistical techniques such as estimation and
confidence intervals provide better instruments and decision criteria.

The second question requires some more elaboration. Choosing the accurate hypothe-
sis test depends on basically five different types of factors. The first element is associated
with the data and the level of measurement of the data under analysis. In this case, it is
possible to identify two different types of variables: numerical and categorical. Numerical
information is associated with continuous and discrete data. This type of data is usually
summarized in terms of parameters, such as the mean or the median. On the other hand,
categorical information is based on nominal and binary outcomes, and the data is mainly
summarized in terms of proportions.

The second factor corresponds to the number of samples. Usually, hypothesis test-
ing consists of one, two, or more groups under study. The third element consists of the
purpose of the analysis. Typical applications of this statistical procedure consist of test-
ing against a hypothesized value, comparing two statistics, the relationship between two
variables, or predicting one variable in terms of another observed variable.

The fourth factor consists of the study design. The observed data can be obtained
based on unpair groups in which data is collected from two or more independent groups.
For instance, treatment and control groups work under this philosophy. In contrast, a pair
group experiment collects data from one group before and after the phenomena under
study. For example, consider the case where researchers study the efficiency of a new
drug controlling high blood pressure. In this case, researchers measure the blood pressure
before taking the medication. After a considerable break, the blood pressure of the par-
ticipants is measured again. The firth element is connected with the assumption adopted

3For example, see (Wasserman, , p- 150) and (Irizarry and Love, ,p. 63)

with the distribution of the data. In this case, normal and binomial distributions are the
most typical cases. However, hypothesis testing is also possible under other non-normal
distributions. Once we had defined the elements linked with the election of the appropri-
ate type of test, we could select the most reasonable hypothesis according to the observed
data and the main assumptions. Table 2.1 provides a summary of the most common tech-
niques based on the previous factors.

Categorical Numerical
One-Sample Test for Test for
(One measure) Proportion a mean

Difference of | Difference of two means
Two-Sample)
two proportions | (Independent samples)

One-Sample (two | Chi-sq test for Regression Difference of two means
measure) independence analysis (paired)
Table 2.1

Example of typical hypothesis test based on the type of data and number of samples.

Equally important than the previous questions, it is also essential to provide a brief
mathematical background related to the hypothesis testing framework. First, we consider
a random variable X with distribution belonging to the parametric family of distributions
{F(-;0) : 8 € ©} indexed by a parameter 6 € ® for whom we want to determine the validity
of a hypothesis Hj, about the parameter 6 against an alternative statement H,. Therefore,
we consider a partition of the parameter space ® into two disjoint sets ®y and ®,. The
hypothesis to test has the following form:

Hy:0€®yversus H; : 6 € O

We can provide more details about the null and alternative statements based on defi-
nition 1. The central insight that we can obtain from this definition is the philosophy of
considering the null hypothesis as the most conservative state.

Definition 1 (Null and alternative hypotheses). The null hypothesis (Hy) is the statement
that is assumed true unless there is enough evidence to reject the statement. The opposite

declaration is the alternative hypothesis (H).

We call a simple hypothesis a hypothesis of the form 6§ = 6,. Similarly, a hypothesis
of the form 6 > 6, or 6 < 6. is called composite hypothesis.

Additionally, according to Molina-Peralta and Garcia-Portugués, , given a simple
random sample (xy, ..., x,,) of X, it is possible to decide on admitting H, or H; based on a
hypothesis test.

Declared non-significant | Declared significant

H, True Correct Decision (TN) Type-I error: (FP)
H, False Type-II error: (FN) Correct decision: (TP)
Table 2.2

Possible outcomes of hypothesis testing.

Definition 2 (Test). A test of Hy versus H, corresponds to a function ¢ : R" — {0, 1} of
the form:

1 if(xg,.xy) €C
Gty =4 |
0 if(xy,...,xy) €C

In particular, the set C corresponds to the rejection region and C¢ is the acceptance
region. As expected, C and C° form a partition of the sample space R".

Thus, based on definition 2, the critical region ultimately determines a hypothesis test.

If we consider the type of experiment, we have two classes of tests. A hypothesis of
the form:

Hy:0=06yversus H; : 8 # 6,

is called a two-sided test or non-directional test. According to Cohen, , this is
the most natural approach when we are comparing two or more populations. On the other
hand, a test with any of the forms:

Hy:0<6yversus H, : 0 > 6,
Hy:0>06,versus H; : 8 < 6,

is considered as one-sided test or directional test.

Following the definition 1, we retain H, unless there is strong evidence to reject the
null hypothesis. However, in the hypothesis testing process, we are conditioned to make
two possible errors. Table 2.2 summarizes the four possible mutually exclusive outcomes
of a test decision. In particular, there are two desired outcomes corresponding to the
true positives (TP) and true negatives (TN). On the other hand, there are two undesired
outcomes: false positives (FP) and false negatives (FN).

We can introduce some mathematical notation related to the previous errors:

e Type-I error (False Positive): Probability of rejecting the null hypothesis Hy, when
we should not, given that Hj is true.

P(Type-I error) = P(Reject Hy | Hy true) = P(X € C| Hy) < «

e Type-II error (False Negative): Probability of not reject the null hypothesis Hy, when
we should, given that H, is false.

P(Type-II error) = P(Do not reject Hy | H; true) = P(X ¢ C| Hy) <

The a and S values are generally small values used as bounds for controlling the
probability of committing type-I and Type-II errors. These values are associated with the
concepts of size and power of a hypothesis test.

Definition 3 (Power function). The power function of a test with rejection region C is
defined by:
BO) =P(X € C | 6)

Definition 4 (Size). The size of a test corresponds to the largest probability of rejecting
Hy when the null hypothesis is true. In other words:

a = sup B(O)
6 € Qg

A test is said to have a significance level « if its size is less than or equal to a.

Based on definition 2, the critical region C is determined as a subset of R”. However,
we can compute it as a function of the observed sample and formulating the critical region
as a subset of the range of the statistic. For example, a typical rejection region is of the
form C = {x: T(x) > c} where T is a test statistic and c is a critical value. More precisely:

Definition 5 (Test statistic). A fest statistic of a hypothesis Hy versus H, is a measurable
function of the sample that under Hy has a completely known distribution.

Finally, we focus the rest of this section on the parameters associated with the reli-
ability of the hypothesis test. The reliability consists of the precision or closeness of a
sample value with which the researcher expects to approximate the relevant population
value. Following the ideas of Cohen, , several indirect factors can affect the trust-
worthiness of the test, such as the population value, shape of the population distribution,
and the unit of measurement. However, four parameters can be associated directly with
the reliability of a hypothesis test. Two of these parameters were previously mentioned:
The significance level and the power. The following two parameters are associated with
the degree to which the study phenomenon exists and the number of observed samples.

Definition 6 (Effect size). The effect size (ES) refers to the degree to which the phe-
nomenon is present in the population.

The effect size allows introducing the difference between being statistically significant
and scientifically significant. When we reject H,, we make the declaration that the test is
statistically significant. However, although the result is declared statistically significant,
the effect size can be small, resulting in a case where the declaration is not scientifically
or practically significant.

Definition 7 (Sample size). The sample size corresponds to the number of observed sam-
ples from the population.

To summarize, we have just defined the main concepts related to classical hypothesis
testing and identifying the main parameters that affect the reliability or precision of the
results during a hypothesis test:

1. Significance level.

2. Power.

3. Effect size.

4. Sample size.

The following section introduces the p-value, which is informally considered to mea-
sure the evidence against the null hypothesis H.

2.2. P-values

The p-value of a hypothesis test is a random variable related with the minor significance
level a at which it is possible to reject the null hypothesis.

Definition 8 (P-value). Suppose that for every a € (0,1) we have a size « test with
rejection region C,. Then:

p-value = inf{a : T(xy, ..., x,) € Cy}
Concerning the numerical value of the p-value, we can make the following assevera-
tions:
1. If the evidence against Hj is strong, the p-value will be small.

2. A Large p-value does not indicate substantial evidence in favor of H,. In general, a
large p-value can occur for two reasons:

e Hj is true.

e H, is false, but the test has low power.

3. P-values do not represent the probability that the null hypothesis is true.

Given the stochastic nature of the p-values, theorem 1 reveals a critical property asso-
ciated with this random variable:

Theorem 1 (P-value distribution). If the test statistic has a continuous distribution, then
under Hy : 6 = 6y, the p-value has distribution U(0, 1). Therefore, if we reject Hy when

the p-value is less than a, then P(Type-1I error) = a

On the other hand, if H is false, the distribution of the p-value will tend to concentrate
closer to 0.

Finally, although there are several test statistics, we only focus on tests that consider
two independent normal populations using small samples during this project. As a result,
the test statistics used under the previous hypothesis is the unpaired -test*. In the next
section, we explore the cases where we conduct many hypothesis tests considering several
features of the two populations.

2.3. Multiple Testing

Given the advances in electronic devices, areas like biostatistics and biomedical sciences
had made possible to study and make inference in large-scale data. In this section of the
thesis, we focus on statistical inference in the context of high-throughput measurements.

Large-scale or multiple hypothesis testing (MHT) refers to the situation in which we
face m hypothesis test of the form:

Hy, versus Hy;,, i=1,..,m

Generally, m is a large number reaching the hundreds, thousands, or even millions of
data. The number of test m corresponds to the total number of features that are measured
using high-throughput technologies. Additionally, the samples refers to the experimental
units where the measurements are collected.

As opposed to the case of individual testing theory (m = 1), where it is only possible
to commit one type of error, in the case of large-scale hypothesis testing, it is possible to
make several type-I and Type-II errors during an experiment. Using the notation provided
by Benjamini and Hochberg, , table 2.3 summarizes all the possibilities of the m
simultaneously hypothesis under a specified significance level @. In particular, from the
total m test, we distinguish the following aspects:

e The number of features for which the null hypothesis is true corresponds to my. In
this case, my is associated with the non-interesting features.

e The number of features for which the null hypothesis is false is m,. In particular,
m; corresponds to the interesting features.

“For more details, see Appendix 6.1.

Declared non-significant | Declared significant Total
H, True U=my—-V \%4 my
H, False T=m -39S S m; =m—my
m—R R m
Table 2.3

Outcomes when testing m null hypothesis.

e R denotes the total number of hypotheses rejected; in other words, the total number
of features we declare significant after applying a statistical procedure. Remember
that the features are considered statistically significant when we reject the null hy-
pothesis H,. Additionally, m — R is the total number of features that we believe non
statistically significant.

e The number of features for which the null hypothesis is valid and the statistical
procedure declares statistically significant is denoted by V. This number represents
the total number of Type-I errors or false positives. Another popular name found in
the literature for the value V is false discovery.

e The number of features for which the null hypothesis is false and the statistical pro-
cedure declares statistically significant is denoted by S. In particular, S represents
the true positives or true discoveries.

e The number of features where the null hypothesis is false and is declared non-
significant is denoted by 7. In particular, 7 = m; — S corresponds to the type-II
errors or false negatives.

e U = my—V denotes the true negatives, in other words, the number of features where
the null hypothesis is true and correctly declared as non-significant.

In general, we assume that m, is much greater than m;. We can add the notation
po = -2 as the proportion of true null hypothesis. Based on this notation, we assume
values of py not less than 90%. Our inference analysis goal consists of detecting as many
cases for which the null hypothesis is false (S) without incorrectly detecting cases for
which the null hypothesis is true (V).

When we make a large-scale hypothesis testing, only the value m is known. A-priori,
we do not know the real proportion py. However, in our simulations, we set the values of
my and m; in order to establish the ground truth. On the other hand, R is an observable
random variable. If each individual null hypothesis is tested separately at level «, then
R = R(a) is increasing in . Finally, V and S (also U and T') are unobservable random
variables. Nevertheless, in our simulations, we know the values of these random values.

Applying the techniques of classical testing in the MHT domain can result in a consid-
erable number of false positives. As a result, several procedures are defined in the context

10

of MHT, and the goal is to estimate and to control an informative error rate below a pre-
defined value for the proposed procedure. For example, the classical hypothesis testing
constitutes a particular procedure that we call uncorrected hypothesis testing-UHT. This
procedure composes of two steps:

1. Compute the p-value of each feature.
2. Declare like significant all the features with p-value less than a.

Under the previous method, the strategy consists of controlling the false positive rate
(FPR). The FPR constitutes the rate of genuinely null features that are declared significant.

In the next section, we explore additional procedures to estimate and control the errors
rate in MHT problems.

2.4. Error Procedures

This segment explores two strategies used for controlling the error rates in table 2.3. One
system constrains the probability of making one or more type-I errors. Another strategy
controls the rate significant features are truly null. We start exploring the approach based
on the likelihood of making Type-I errors.

2.4.1. Family Wise Error Rate

When the statistical analysis consists of a single null hypothesis H, with significance level
a, according to theorem 1, the hypothesis test satisfies:

a = P(Reject true H) (2.1

In the case of a collection of m null hypothesis Hy; with i = 1, ..., m, the Family Wise
Error Rate (FWER) is defined as the probability of making even one false rejection:

a = P(Reject any true Hy,) 2.2)
There exist several methods for controlling the FWER. In this section, we consider
the most popular way: The Bonferroni correction.

Definition 9 (The Bonferroni Method). Given the p-values py, ..., p,,, we reject the null
hypothesis H; if:
a .
Pi < qrwer = o fori=1,...m

Theorem 2. Using the Bonferroni method, the probability of falsely rejecting any null
hypothesis is less than or equal to «, in other words, P(R) < a.

11

According to (Efron and Hastie, , P-275), methods based on controlling the
FWER were initially designed for small-scale testing, for example, m < 20. Therefore,
these methods are very conservative for large-scale testing, leading to a high rate of type-
II errors. As a result, the second approach, based on controlling the false discovery rate,
provides a more liberal criterion.

2.4.2. False Discovery Rate

In this case, we use the concept of Decision rule D provided by (Efron and Hastie, ,
p.275). First, we define a decision rule D that rejects a total of R hypothesis with V type-I
errors (False discovery). Then, we establish the False-discovery proportion (FDP) of D
as:

V .
R ifR>0

FDP(D) =
0 ifR=0

As expected, FDP(9) is an unobservable random variable. However, under some
scenarios, it is possible to control its expectation, called the False Discovery Rate (FDR).

FDR(D) = E[FDP(D)] (2.3)

One approach to control the FDR is given by Benjamini and Hochberg, . In this
case, we order the p-value from smallest to largest:

Definition 10 (The Benjamini-Hochberg (BH) method). Let py < - - -pm) denote the
ordered p-values. We define:

L= Cla , and R = max{i : p; < L;}
Where
c 1 if the p-values are independent
" T3 otherwise

Let grpr = Py, we call qrpr the BH rejection threshold. In this case, we reject all
null hypothesis Hy; for which pg, < qrpg.

Theorem 3. If the Benjamini-Hochberg procedure is applied, then regardless of how
many nulls hypotheses are valid and irrespective of the distribution of the p-values when
the null hypothesis is false, we have that:

FDR®) < Pa < a
m

12

Figure 2.1 summarizes the errors procedures under uncorrected testing (rejection when
pi < a, upper blue line, with R = 4), Bonferroni correction (rejection when p; < grwgr =
a/m, with R = 0) and BH procedure (rejection when p;, < ggpr), where the threshold
grpr 1s the most rightmost undercrossing of the upward sloping line. Under BH proce-
dure, the number of rejections is R = 2.

Figure 2.1
Summary of uncorrected hypothesis test, Bonferroni

correction and Benjamini-Hochberg correction.

¢
o & :
b4 . .
T T —
; [3 : - - -]
ajm I/‘ . . . - 4
reject I don'’t reject
Threshold
Image source: Wasserman (, p- 168)

2.5. Performance metrics

The situations presented in tables 2.2 and 2.3 are completely analogous to the confusion
matrix used in binary classification problems. This section considers the multiple testing
problem like a supervised machine learning model, specifically a binary classification
problem. With this strategy, it is possible to compare the performance of the methods
controlling the error rates in the large-scale testing framework. Additionally, we consider
the features where the null hypothesis is false as the positive class.

In supervised learning classification, global accuracy, defined as the correct predic-
tion ratio, is the most common metric used to measure the trained models’ performance.
However, we face two difficulties associated with this measure:

1. Given the low proportion of cases where the null hypothesis is false, we face an
imbalanced dataset. The global accuracy can not measure the variable of interest
appropriately or adequately consider the misclassification cost.

2. The significance level predefines the results obtained in the classification. As a re-
sult, changing the significance criterion will change the number of features declared

13

significant or non-significant.

One way of dealing with the first problem is to use a different metric called balanced
accuracy. According to Brodersen et al., , this measure corresponds to the average
accuracy obtained on each class:

1(TP TN)

- + (2.4)
2\TP+FN TN +FP

balanced-accuracy =

For equation (2.4), the range of the previous score is from 0 (worst) to 1 (best).

Another approach used with binary data is the Receiver Operating Characteristic
(ROC) curve and the area under the ROC curve (AUROC). The ROC curve compares
the true positive rate (TPR) and the false positive rate (FPR). In classification, the FPR
is the ratio of negative instances that are incorrectly classified as positive. In Machine
Learning literature is popular express the FPR as FPR = 1 — specificity = 1 — TNR,
with specificity (True Negative Rate) computed as the ratio of negative instances that are
correctly classified as negative. The ROC curve plots the FPR against the TPR for all
possible thresholds. The AUROC is a useful way to compare different classifiers.

According to Aghaebrahimian and Cieliebak, , the ROC 1is a probability curve
and the AUROC measures separability. The area under the ROC curve specifies how
much a model is capable of distinguishing between the classes®. The ROC and AUROC
metrics provide two main advantages:

1. When we compute the ROC and AUROC curve for a specific predicted class, the
value of AUROC and balanced accuracy are the same.

2. ROC curves allow us to determine the effect of the predefined significance level
used for the hypothesis test.

However, given that the denominator of FPR considers the total number of true nega-
tives, in the case of a skewed dataset, the ROC and AUROC can be too optimistic. As a
result, another way used for evaluating the performance of a classifier is to look directly
at the confusion matrix. In this case, we count the number of times instances of each
class. For computing the confusion matrix, we must compare the predictions with their
respective actual target. If we require a more concise metric, we can focus on the accuracy

of the positive class predictions. This measure is given by the precision of the classifier,

TP
TP+FP

ever, there are trivial ways of having a high precision metric. For example, consider the

where precision = with TP and FP as the true and false positive respectively. How-
case of m = 1000 test where m; = 100. So, in case that one of the statistical procedures

correctly declares as significantly one hypothesis, we have precision = % = 100%. So,

3In our case, which observations come from the null or alternative hypothesis.

14

the precision metric does not consider the cases for the rest 99 features whose null hy-
pothesis is false. In consequence, the precision is typically accompanied by the recall®.

Recall consists of the ratio of positive instances that are correctly detected by the clas-

TP
TP+FN’

inverse relationship between these two metrics, there exists a precision/recall tradeoff. As

sifier, in other words: recall = with FN referring the false negative. Given the
a result, based on their classification score and a specific decision threshold, the features
are ranked. Features above the chosen threshold are considered positive. In particular,
the higher the threshold, the higher the precision and the lower the recall. One way to
visualize this tradeoff is obtained by plotting the precision and recall curve and the area
below the precision-recall curve (AUPRC).

A perfect classifier will have AUPRC = 1. On the other hand, the baseline for this
curve is the proportion of positive cases in our data. In the case of MHT problems, the

baseline will be p; = =

In summary, the precision-recall curve (and the AUPRC) is preferred in the cases
where the positive class is rare or when we are more careful about the false positives than
the false negatives. Otherwise, we can compare the models using the ROC curve and
AUROC.

For this project, given the heavy imbalanced data, the focus of the performance on the
positive class, and the precision/recall tradeoft decision based on the predefined threshold
level, we consider the total AUPRC as the primary metric for comparing among all the
proposed procedures. Additionally, the AUROC and the total number of rejections (R)
are used only to reference the behavior of the different models.

The next step is to conclude the ways of measuring the performance of the models un-
der the multi-label perspective. According to Koyejo et al., , when we extend a set of
binary metrics to a group of several labels, it is possible to construct the new metrics by av-
eraging respect to the labels (instance-averaging) with respect to examples separately for
each label (macro-averaging) or concerning both labels and examples (micro-averaging).

In our particular case, we focus on the performance of the models for the respective
label and each example. The labels consist of the declared values with O (null hypothesis)
and 1 (alternative hypothesis). The examples correspond to each particular MHT problem.
As a result, we use micro-averaging for measuring the accuracy of the models in the
multi-label setting. Additionally, based on the SK-Learn documentation, micro-average
is preferred in multi-labels environments when we ignore the majority class. This scenario
essentially occurs in cases of heavy imbalanced datasets.

6 Also called sensitivity or true positive rate.

15

https://scikit-learn.org/stable/modules/model_evaluation.html#precision-recall-f-measure-metrics

2.6. Simulation case 1: Female mice diet

To provide an example of all the previous concepts, we use the femaleControlsPopulation
dataset from Irizarry and Love, 202 1. The dataset contains the weight in grams of 225 fe-
male mice. This dataset corresponds to the population of mice from which we can sample
our control and treatment sample units. Figure 2.2 shows the distribution of the female
mice population. The range of body weights is from 15.51 to 38.84 grams. The sample
mean of the weights corresponds to 23.89 grams with a standard deviation of 0.22 grams.
First, we review some concepts related to power analysis considering classical hypothesis
testing on one feature. Then, we analyze the hypothesis testing on high-dimensional data.

Figure 2.2
Distribution of the female mice body weight used as control popu-

lation.

Body weight of female mice control population

014

012 |

010

5th 95th percentile

0.08

Density

0.06

0.04 4

0.02 A

0.00 -

25 0
Body weight (Grams)

Simulation 1.1: Classical Hypothesis testing

In the classical hypothesis testing, we focus on power analysis, considering the power as
a function of the significance level, the effect size, and the number of samples. Power
analysis is part of research planning and lets us determine the required specifications of
the experiment to reach a determined statistical power. Authors like (Irizarry and Love,
2021, p. 65) even consider this type of analysis as an ethical obligation, given that it is
possible to determine the number of sample units exposed to the risk beforehand.

Figure 2.3 shows the simulation results for illustrating the concept of statistical power.
Precisely, for predefined significance levels 0.05 and 0.01 and four effect sizes ranging
from 1 to 4 grams, we compute the power in function of the number of observations from
control and treatment groups and applying a t-test for comparing these two units. The
power is calculated by iterating B = 2000 times and calculating the proportion of cases

16

https://raw.githubusercontent.com/genomicsclass/dagdata/master/inst/extdata/femaleControlsPopulation.csv

where the null hypothesis is rejected.

Based on figure 2.3, we observe how after an effect size of 3 grams, independently
of the significance level, we obtain relatively high power exposing the less quantity of
mice. Furthermore, we notice how the statistical power has a positive relationship with
the sample size. For a significance level of 0.05, after 12 sample units by group, we reach
a statistical power superior to 0.5 for an ES of three grams. If we consider a significance
criterion of 0.01, with the previous sample and effect size, the statistical power decrease
to approximately 0.3.

Figure 2.3
Power plotted against sample size and fixed levels of ES and significance level

Power of t-test: Female mice diet
Significance level = 0.05 Significance level = 0.01

10 10 { —— E5=1
ES=2
-~ E5=3

0§ { —— E5=4

0a

06 06

Power
Power

04
0.4

02

0.0 '—"_"’_‘_(Hﬂfa

3 6 9121518 21 24 27 30 33 36 39 42 45 43 51 36 0121518 21 24 27 30 33 36 39 42 45 48 51
MNumber of observations Number of observations

0.2

From the previous exercise, we obtain a crucial insight. We can observe how the effect
size depends on the unit of measure (grams). However, authors like Cohen, provided
metrics that allow the generalization of a universal effect size index. In particular, in the
case of the difference between population means, we can standardize the difference by di-
viding the pooled within-population standard deviation. In summary, for two independent
samples case A and B, we define d as the ES index of the t-test of means in standard units
as:

_ lma — mp|

d (2.5)

N

with m, and mp as sample means expressed in the original units’ and s is the pooled
standard deviation of both samples. Based on expression (2.5) (Cohen, , p. 40)
provides conventional definitions of range of the ES index:

1. small: d = 0.2,

2. medium: d = 0.5,

For the two-tailed test, the alternative hypothesis states only that m, # mg.

17

3. large: d = 0.8.

Considering the previous simulation, figure 2.4 reflects the distribution of the ES index
when we sample N = 12 mice for each group, and the significance level is 0.05. In
particular, for ES = 1 gram, we notice a concentration of ES index around zero with
a median effect size index of 0.36. As a result, when ES = 1, we have a negligible
effect size index. For ES = 2 grams, the distribution of ES index has a left-skewed form
resulting in a range of small-medium effect sizes. The median, in this case, is equal to 0.6,
resulting in a medium effect size index. Finally, we notice a more symmetric distribution
associated with the ES index for effect sizes three and four grams. Starting with three
grams, we can conclude that the effect size is considered relevant for differentiating the
outcomes of diet between the treatment group and the control group.

Figure 2.4
Distribution of the effect size index.

Cohen's d effect size: Female mice diet

ES=1 ES=2
600 1
Median: 0.36 Median: 0.60
. 400
500 I
400 300
300
— 200
200
100
o T T T T T T T T 0-— T T T T T
000 025 050 075 100 125 150 175 200 00 05 10 15 20 25
ES=3 ES=4
B Median: 0.59 500] Median: 1.20
400
400
300
300
200
200
100 100
0 o

0.0 05 10 15 20 25 00 05 10 15 20 25 30

Simulation 1.2: Multiple Hypothesis testing

Next, we consider an MHT problem where we perform tests for m = 1000 female mice
diets, which 10% affect weight. Then, we design the following hypothesis test:

e Hy;: Dietifori=1,...,m does not affect weight.

e H,;: Dietifori=1,...,m affects weight.

For the units whose null hypothesis is false, we consider an effect size over the weight
has an average of three grams. For each test, we will use a sample size of N = 12 female
mice from the population. Finally, the significance level is fixed to @ = 0.05.

18

Not sig- | Significant Not sig- | Significant Not sig- | Significant
nificant nificant nificant
True | 860 40 True | 900 0 True | 900 0
False| 48 52 False| 98 2 False| 94 6
Table 2.4

Summary results of MHT without correction, Bonferroni and BH procedure.

The goal will be to detect as many false null hypotheses as possible. To sum up, the
null hypothesis is true for my = 900 diets, corresponding to a proportion of true null

hypothesis of pg = ¢ = 0.9. The null hypothesis is false for m; = 100 features.

T om

Figure 2.5 shows the histogram of the distribution of the p-values. According to the-
orem 1, we can consider this distribution as the mixture of the uniform distribution when
the null hypothesis is true and the distribution of the concentrated p-values around zero

for the cases where the alternative distribution is valid.

Figure 2.5
Histogram of p-values. Simulation considers my diets having differ-

ence between the groups.

P-values of female mice diet: Control vs treatment

100

8
|

____ Uniform distribution: U{0,1) = 45

Frequency

[

0.0 02 0.4 06 08 10
pvalues

Table 2.4 shows the results of the simulated m = 1 000 hypothesis test. In the hypoth-
esis test without correction, the total rejections are R = 92 with a type-I error rate (FPR)
of 0.04 and a type-II error rate of 0.48. The model’s performance in terms of global ac-
curacy is 0.91, and in terms of balanced accuracy is 0.74. Then, we have in the center
of table 2.4 the summary table using the Bonferroni correction. In this case, we have
only R = 2 rejections, representing a Type-1 error O but with a costly Type-II error rate
of 0.98. Global and balanced accuracy are 0.90 and 0.51, respectively. Finally, under the
BH procedure, the rejections slightly increase to R = 6, preserving a type-I error of 0 and
a Type-II error rate of 0.94. Global and balanced accuracy are 0.91 and 0.53, respectively.

19

0.0001 0.001 0.005 0.01 0.025 005 01 02 03
Uncorrected 3 9 23 30 56 92 156 259 363
Bonferroni 0 0 0 1 2 3 5 6
BH 0 0 0 2 6 9 16 30
Table 2.5

Outcomes when testing m null hypothesis for specific significance levels.

The accuracy of the statistical analysis depends on the significance level used under

each procedure. The left panel of figure 2.6 shows how the features are declared signifi-

cant or not significant according to the control level threshold used by the BH procedure.

The right panel is only a close-up of the features based on a control level of 0.05, where

we can appreciate the six relevant features of table 2.4 under the BH procedure.

Figure 2.6

Distribution of the sorted p-values and two FDR control levels.

pvalues

10

0a

06

04

02

0.0

BH procedure on p-values of Female mice diet

a) BH-bounds

pvalues

0.0012

0.0010

0.0008

0.0006

0.0004

0.0002

0.0000

b} BH-bounds (First 10 p-values)

== q=005

Table 2.5 shows the total number of rejections on the significance space ranging from

0.0001 to 0.3%. After a threshold of 0.1, hypothesis testing rejections without correction

increase faster than Bonferroni and BH methods.

A complete overview of the performance of the models in the range from O to 1 is

obtained in figure 2.7. In the left panel, we observe how the Bonferroni method has

the lowest rejections compared to the other methods. In this situation, controlling the

FWER assures a low statistical power. On the other hand, the number of rejections under

BH explodes after a significance level of 0.6, reaching the total features rejected at a

significance level of 1. Although the velocity of rejections is different for the Uncorrected

hypothesis testing and the BH procedure, we notice how the ROC and Precision-Recall

curve have similar behavior for both methods.

8The range from 0.0001 to 0.3 is related to the p-value calibration that we will see in section 2.7.

20

10

Figure 2.7

Performance metrics in the complete significance space from 0 to 1.

Comparision of methods in the complete significance space

Total Rejections ROC Curve Precision-Recall Curve

1000 { —— Uncorrected 10
Bonferroni

— BH

800 08

600

=
=

Rejections (R)
Precision

400

Tue positive rate (TPR)

=
=

200

= AUROC-UHT = 0.57
AUROC-Bonf = 0.00

= AUROC-BH = 0.86
baseline

AUPRC-Bonf = 0

10 —— AUPRC-UHT = 057

09

—— AUPRC-BH = 057
Baseline = 0.10

oo 02 o4 06 08 10) DIG 02 o4 06 08 10 0o 0z 04 06
Significant values False positive rate (FPR) Recall

2.7. P-values in a Bayesian context

The previous analysis follows the traditional path of considering the p-values to measure
the evidence against the null hypothesis model based on the input data. However, in
some applications, the concept of p-value is often the victim of some misinterpretation or
abuse’.

Consequently, we introduce an alternative calibration of p-values in a Bayesian con-

text. Under a Bayesian approach, we are interested in studying the expression P(H, | Data).

Unfortunately, it is impossible to derive P(H, | Data) from the observed p-values. Nev-
ertheless, it is possible to use the p-values for deriving an infimum bound of the previous
conditional probability. Specifically, we compute a lower bound of the calibrated p-value
that can be interpretable like an odds.

The ideas exposed in this section corresponds to the work of Sellke et al., . In
their paper, the authors offer two alternatives for calibrating the p-values. The first ap-
proach corresponds to a Bayesian perspective in which we obtain a lower bound of the
odds provided by the data for Hy to H,. The second alternative considers the p-values
as the conditional frequentist error probability. In both cases, the p-value calibrations are
based in the context of two-side testing situations. Although the authors extend the second
approach into a Bayesian framework, we focus only on the first alternative in this project.

One reason that justifies exploring new ways of measuring the evidence of a test is
given by the possible contradictory results obtained if we base the discoveries of a study
on p-values entirely. For example, based on the stated p-values in figure 2.5, we observe
that from the 92 first p-values less than 0.05, 40 p-values (43%) corresponds to cases
where the null hypothesis is true, but the premise is incorrectly rejected. If we reduce
the significance level to 0.01, we only have 30 p-values less than this threshold, with five
p-values (17%) being incorrect rejections.

Sander et al., presents an extensive list of the most typical misunderstanding about P-value.

21

As a consequence, under this new interpretation, the p-value can be used to compute
an inferior bound of the odds of the null hypothesis H, against the alternative hypothesis
H,. Following the Sellke et al., paper, their calibration assumes that the p-values
have a uniform distribution under Hj, according to theorem 1. But, the innovative approach
of Sellke et al., is based on considering alternative distributions for the p-value under
the alternative hypothesis. In this way, under H;, the density distribution of the p-value
corresponds to f(p|¢€), with & an unknown parameter.

In the scenario where appropriate test statistics offer large values of T(X) as evidence
for the alternative hypothesis, we have that under H,;, the density distribution of the p-
values should be decreasing. For this reason, Sellke et al., proposes to use beta
alternatives. Specifically, the recommendation of the authors consists in use a beta class
distribution of the form Beta(&, 1) with 0 < & < 1. As a result, the density distribution
under H, is given by the expression (2.6):

P! I'é+1) £-1 £)
= = &pf .6
BeD teram? P (26)

The simplified version of equation (2.6) is based on the properties of the gamma func-
tion ['(€ + 1) = &I(¢) and I'(1) = 1. Then, the odds (or Bayes factor) of H, to H; for a
given prior density m1(£) under this alternative distribution is:

f(ple) =

(plD)
B(p) = L 2.7
Iy fplém(€)dé
Finally, the lower bound of the Bayes Factor (2.7) is given by the equation (2.8):
—eplo ifp<e!
LBBF(p) = | “P'°¢P) P 2.8)
1 otherwise.

Based on the lower bound of the Bayes factor (LBBF) for the p-value obtained in
expression (2.8), table 2.6 shows the associated calibration of the p-values if we consider
the significance levels used in table 2.5 and the significance level 1 /e ~ 0.37. In particular,
for p-value = 0.05, the lower bound of the Bayes factor is LBBF(0.05) = 0.407. In terms of
odds ratio, H, is just 2.5 times more likely to occur than Hy. If we reduce the significance
level, we see how the odds against Hj increase. However, this represents a considerable
decrease in the power of the hypothesis test.

For an MHT problem with m features, we define the vector 8" = {b;; = LBBF(p)) | Vi =
1, ...,m} as the set of ordered lower bound Bayes factors related to the sorted p-values p;
in ascending order. Returning to the collection of p-values in figure 2.5, we observe that
434 p-values are less than 1/e. On the other hand, 566 p-values are above the previ-
ous threshold. Figure 2.8 reflects the relevant m* = 434 features whose p-values is less

22

0 1 2 3 4 5 6 7 8 9

p 0.0001 0.001 0.005 0.01 0.025 0.05 0.1 0.2 0.3 e!

LBBF(p) 0.003 0.019 0.072 0.125 0.251 0.407 0.626 0.875 0982 1

Odds (HO to H1) 399 53 14 8 4 2.5 1.6 1.14 1.02 1
Table 2.6

Calibration p-value Bayesian context.

than e~!. From the previous example, the distribution of the bounds is completely right-
skewed, meaning that most of the features are roughly 1 to 1 for Hy to H;.

Figure 2.8
Distribution of the values of LBBF less than 1. In total, there are
only 434 features.

Distribution of the lower bound Bayes Factors

[Significant —
[Mon-significant

100

Frequency
g

0.0 02 04 06 08 10
Lower Bound BF

In the next section, we present a new calibration of the p-values based on the previous
method but adding some relationships among the p-values.

2.8. Proposal: P-values representation

We study the interaction of the lower bound Bayes factors of the m features by considering
the quotient of each LBBF b;, concerning the rest of the LBBFs in the vector 8™. As a
result, we will obtain a matrix B with size m X m. In addition, we scale each entry down
to the 0-1 range by dividing each entry by the maximum quotient of the matrix B.

Mathematically, we represent the calibrated p-values with the map ¥ : 8" — M™"
defined for each feature i = 1,...,m as ¥(b;)) = % Vj=1,..,m As aresult, we obtain
J

23

the matrix in expression (2.9) corresponding to the matrix of relative evidence among test.

by bo b
T T bayy bayey -+ baym
(D) (2) (m)
b b T | |P@O bPoe - bem
B=1"" 1=) , : (2.9)
by bo bgm)
TR e I L2 O I R L)

Then, we normalize each entry of matrix B in the range [0, 1] by dividing each matrix
element by the maximum quotient by, = max{b;} for i, j = 1,...,m. We denote the
scaled matrix of relative evidence among tests as B according to expression (2.10) with
- b g
bay) = 5o

bmax :

bayy bma - baym

B bow bow - bem

(2.10)

E(Wl)(l) B(m)(z) l_?(m)(m)

Based on the simulation case 1.2 of section 2.6, the left upper panel in figure 2.9 shows
the representation of the p-values in grayscale. Given the considerable number of features,
it is not easy to notice some insight. For this particular representation, 98% of the matrix
entries have a value less than 0.005. In this situation, we notice how the highest values
tend to stay in the uppermost right corner of matrix B. The right upper panel in figure 2.9
shows the representation in log scale!’. Indeed, we notice the distribution of the lowest
values in the left lowermost position of the matrix representation.

Finally, the low panel of figure 2.9 provides a reference of the distribution of the
alternative hypothesis (black lines) and the null hypothesis (white blocks). As expected,
after ordering the p-values, the interesting features'! are concentrated in the left extreme
of the vector. However, we notice some true alternative hypotheses over the rank of 400'2.
In the traditional MHT procedures, larger p-values'® never cause in MTH procedures to
reject H.

Based on the previous structure, the following chapter explores the possibility of using
simulations instead of other observed information'* to solve MHT problems. In particular,
given the features and sample units, it is possible to simulate different scenarios varying
the effect size and proportion of the true null hypothesis.

0The log scale is used only for the visual representation, not for evaluating the LBBF quotients or
training the Deep Learning models in chapter 3.

Hlnteresting refers to the features whose null hypothesis is false.

I2Remember that the number of true alternative hypotheses is 100.

13Specifically, higher values than 1/e.

14Using endogenous or exogenous information for sampling the null distribution was the approach em-
ployed by Mary and Roquain,

24

Figure 2.9
P-value representation of the MHT. In particular 98% of the LBBF are less than 0.005.

Image representation of p-values: Quotient of LBBF

D -1 scale Log scale
10 o
- 0.8 200
- 0.6 400
- 04 600
F0z2 800
0 250 500 750 I] 250 500 750

Distribution of null hypothesis

ML L] [1]

200 400 E00 BOO

The simulation and posterior training of the models are based using a Deep Learning
approach, essentially using Convolutional Neural Networks (CNNs). Under this point of
view, we start to do the analogous of the p-values representation in the matrix (2.10) with
an image and calling each matrix entry as a pixel.

CNNss typically have an accurate performance level when dealing with image objects.
For this reason, it is crucial to determine the geometric structure in images that CNNs
exploit. For image objects, one primary assumption of CNNs is based on the fact that data
is compositional. In other words, pictures are formed of stationary patterns (essentially
translation invariance) and exhibit feature locality (pixels that are more closer are more
related). In our case, the matrix representation of the calibrated p-values as quotients of
ordered LBBFs provides a topology relevant to the model’s performance.

Finally, another reason for employing CNNs instead of other Artificial Neural Net-
work approaches!? is the curse of dimensionality problem. With a small number of fea-
tures m, it is possible to use CNN and ANN architectures indistinctively. Nevertheless,
when increasing the number of features, the number of parameters in ANN expands con-
siderably, leading to misleading solutions or computational problems. On the other hand,
CNN s is an architecture designed for high-dimensional learning problems.

15Such as Multilayer Perceptrons Networks.

25

1000

3. CONVOLUTIONAL NEURAL NETWORKS

From the matrix representation obtained in section 2.8, we use Deep Learning (DL)
frameworks to detect significant features and patterns in the scaled matrix of relative evi-
dence among tests (2.10). We divide this section into three parts. First, we provide a brief
introduction concerning the deep learning frameworks. This section focuses on Artificial
Neural Networks (ANNSs). The second part center on the study of the Convolutional Neu-
ral Networks (CNNs). We will review the main differences between the traditional ANNs
and this particular architecture.

The idea of this section is not based on defining in great depth the philosophy of Deep
Learning or explaining in profundity the concepts and processes related to this machine
learning framework'®. If the reader wants to go deep into the previous approach, the
literature associated with Deep Learning is broadly abundant. For example, practical
overviews of Deep Learning are available in the books of Géron, and Verdhan,

. Similarly, theoretical material is available in the paper of Roberts et al., and
the book of Goodfellow et al.,

On the contrary, the purpose of this section is to define the necessary concepts that
allow us to answer the following points:

e To define the best neural network architecture for the specific problem. In other
words, determine the depth and breadth of the Neural Network.

e To search the appropriate hyperparameters in order to obtain a suitable model and
avoid fitting problems, specially overfitting.

Finally, the third part consists of two simulation exercises with m = 100 and m = 1000
features. In both practices, we continue using as the reference dataset the femaleControl-
sPopulation.

3.1. Artificial Neural Networks

3.1.1. Fundamentals of ANNs

This section will review the concepts properly of Deep Learning and traditional ANNs. A
helpful way of study these concepts is by dig deep into the concepts of deep and learning.
First, the “deep” in Deep Learning theory consists of successive layers of representation.
As a result, the depth for a specific model relates to the number of layers in the ANN. In
general, a primary artificial neural network architecture consists of three types of layers:

161t can take a complete thesis to reach that purpose.

26

https://raw.githubusercontent.com/genomicsclass/dagdata/master/inst/extdata/femaleControlsPopulation.csv
https://raw.githubusercontent.com/genomicsclass/dagdata/master/inst/extdata/femaleControlsPopulation.csv

1. Input Layer: It receives the input data. In the case of ANNSs, the input is a 1-
dimension object.

2. Hidden layer: Components of the neural networks involved in the processing, fea-
ture extraction, learning, and training of the neural network.

3. Output layer: Final piece of the neural network that makes a judgment based on the
outputs of the preceding layers and generates the final result.

The layers are composed of artificial neurons, and the way these neurons are con-
nected is crucial in the type of layers. In the case of the ANNSs, the neurons in the layers
are fully connected. Therefore, each neuron can deal with multiple inputs and outputs
connections. The left panel of figure 3.1 provides an example where we consider a simple
neural network with one input, hidden and output layer. The right panel of figure 3.1
shows how it is possible to deal with more complex models by adding several hidden lay-
ers. In particular, we notice how determining the precise number of hidden layers is the
essence of neural network procedures.

Figure 3.1
Difference between a simple and Deep Learning Neural Network.

In both cases, the neurons are fully connected.

Simple Neural Network Deep Learning Neural Network

Image source: Williams et al. (,p-4)

Second, it is possible to interpret the term “learning” as the process of adjusting the
weights and the bias (intercepts) inside the network to improve the subsequent accuracy
of the model. Improving the model’s accuracy reduces the error term (difference between
the actual value and predicted value) that is measured using a cost function. Figure 3.2
summarizes the interaction of the previous elements in the context of supervised learning
for a model with one input layer receiving a dataset X, two hidden layers, and an out-
put layer involved with the prediction of the target variable Y. After realizing an initial
prediction, we can compare the accuracy of the output with the labeled actual values of
the target variable. The tool used for measuring the accuracy of the model is the loss
(or objective) function. The comparison of the predicted value and the true value in the
objective function is the loss score. Finally, after a significant number of iterations, the
neural network’s purpose consists of decreasing the error rate. In order to achieve this

27

constant improvement, the loss score is used as a feedback signal to adjust the value of
the weights via the optimizer. The backpropagation algorithm does this final process.

The training process consists in adjusting parameters for achieving the best accuracy.
ANNS s can learn some of these variables!” using the raw data. However, other variables
determining the neural network structure are impossible for the ANNSs to learn by them-
selves and must be set before the training process. The last type of attribute refers to
hyperparameters.

Figure 3.2

Principal components of a Neural Networks in a supervised learning context.

Input Data is X
Weights are here

Data Transformation Layer

Weights are here Data Transformation Layer

Prediction of Target Variable ¥

True Values of Target Variable

Loss Function

Optimizer

Loss Score

Image source: Verdhan (2021, p. 37)

3.1.2. Hyperparamerter tuning in Neural Networks

Given that it is possible to define any imaginable network architecture, several authors
consider that the tremendous flexibility of Neural Networks is also one of the more rele-
vant drawbacks'®. Even if we use a simple ANN architecture, we need to define parame-
ters such as the number of layers, neurons per layer, initial weights, etc. In consequence,
several researchers consider that Deep Learning is more like Art than Science'.

The list of hyperparameters in the next section does not represent the complete inven-
tory of all the available options. It is a reference guide of the most relevant attributes,
following the ideas of Géron, 2019. The first hyperparameter is related to the architecture
depth of the neural network.

For example, the weights and bias.
18See Géron, 2019.
Instead of Science, some authors believe that DL is more related to engineering than Science.

28

Number of hidden Layers

In general, an ANN with a single hidden layer provided with enough neurons can theo-
retically model even the most complex functions. However, for complex problems, depth
deep networks have a much higher parameter efficiency than simple networks. In other
words, using the same amount of training data, depth networks using considerably fewer
neurons than shallow approaches can reach a better performance.

If we focus on the input data, data have some structural properties that define the
number of layers. For example, some datasets are structured hierarchically, and deep
neural networks can utilize this structure. As a result, lower hidden layers model low-
level structures. Intermediate hidden layers combine these low-level structures to model
intermediate-level forms. The highest hidden layers (including the output layer) connect
these intermediate structures for modeling the high-level features.

Additionally, the previous structure improves the ability to generalize to new datasets>.
In other words, an ANN can use the low-level structures learned in other ANN trained
with similar data and used for dealing with a similar task than our original ANN. Then,
only our original ANN requires setting the specific high-level structures of the particular
problem that the neural network tries to solve. As a result, it is common to reuse parts
of pertained state-of-art networks that perform a similar task instead of training a model
from scratch.

Finally, we must also consider the problems related to the case where many hidden
layers are used. First, we increase the risk of making overfitting. Second, Given that the
artificial neural networks are fully connected, deep neural networks considerably increase
computation time when we train on big datasets.

Number of Neurons per Layer

Depending on the type of layer, we can define the correct number of neurons per layer
into three categories. In the input layer, the number of neurons is entirely determined by
the type of input. For example, in a matrix of size m X m, the number of neurons in the
input layer is just m? neurons. For the output layer, the number of neurons is predefined
for the kind of task. For example, in the case of classification, the number of neurons in
the last layer is just the number of classes. In our case, we want to classify each of the m
features corresponds to the null or alternative hypothesis.

For the hidden layer, determining the number of hidden neurons is more complex. At
this stage, we can identify three different alternatives concerning the size of the number
of neurons.

1. Pyramidal: We set an initial number of neurons and then continue with fewer and

2Indeed, this is the principle behind some of the most relevant machine learning procedures at this
moment: Transfer Learning

29

fewer neurons at each layer. This idea is based on the assumption that many low-level
features can combine into far fewer high-level features.

2. Same number: In some cases, using the same number of neurons in all hidden
layers works just as well or even better than the previous approach. This alternative also
offers one advantage: it only represents one hyperparameter to tune instead of a specific
number of neurons per layer.

3. Increasing number of neurons: In this case, we increase the numbers of neurons
gradually until the networks start overfitting. This strategy is used with another approach
called early stopping. We suspended the fitting process under the early stopping approach
before the overfitting drastically biased the training process. We will give more details of
the early-stopping when we discuss the number of iterations.

The next hyperparameters are related to the optimization process involved in the fitting
process. In this case, the first election that we need to choose is: Which optimizer to use?

Optimizer

In general, Keras offers several optimizers that can be used for training the neural net-
works. Complete details are available on keras/optimizer documentation. In our case, we
consider the Nadam optimizer given its high convergence speed and quality.

Batch Size

This hyperparameter has a significant impact on the model performance and training time.
Large batch sizes allow the training algorithm to see more instances per second. However,
we must be careful that large batch sizes often lead to training instabilities, especially at
the beginning of training. The resulting model may not generalize as well as a model
trained with small batch size. In our case, given the relatively low number of data, we use
the default settings?!.

Learning rate

According to Géron, , one recommendation for dealing with this variable is to start
with a shallow scale. Then, we can plot the loss as a function of the learning rate. Next,
we can reinitialize the model and train again using the appropriate learning rate.

Additionally, the applicable learning rate depends on the choose optimizer and the
batch size. Finally, one crucial recommendation is that we always need to search for the
correct learning rate each time we change the model’s architecture or other hyperparam-
eters. In our case, we use the default parameter.

2! According to Keras model training documentation, the default parameter is 32.

30

https://keras.io/api/optimizers/
https://keras.io/api/optimizers/Nadam/
https://keras.io/api/models/model_training_apis/

Number of iterations

The number of total iterations of the model is called an epoch. In our neural networks,
we consider 50 total iterations. Additionally, we add a callback technique called early-
stopping. Adding this callback to the model will stop training when it measures no
progress on the validation set for a consecutive number of epochs.

Initial weights

There are several options for the initial weights??. Based on the principle when H, holds,
then the p-values are uniform, we consider the Heuniform as the initial weights for all the
layers.

Activation function

Keras documentation provides a list of all the possible activation functions used in the
model’s architecture. In general, ReLU is the most common option used on the hidden
layers.

In the case of the output layer, the activation function depends on the task. The frame-
work used for solving the MHT problems is the Multi-Label classification problem. As
a result, each feature is independent of other features. Consequently, the probability of
each component corresponds to the Bernoulli distribution, which can be modeled using
the sigmoid activation function.

3.1.3. Overfitting

Overfitting occurs when the model can learn the attributes and features accurately in the
training set, but the accuracy drops on the validation and testing sets.

In general, the way of avoiding overfitting is training the data with more data. How-
ever, this can be a difficult task in some circumstances. Another more straightforward
alternative is to reduce the complexity (depth) of the neural network.

There are other techniques that we can use to mitigate the problem of overfitting. Pre-
viously, we introduced the callback of Early stopping. Another method used for reducing
the overfitting is to add a dropout layer. Dropout is another regularization method. During
training, the output of some layers is randomly dropped out or neglected. With dropout,
we will have a more noisy training process reaching a more robust solution.

Dropout is available in Keras, adding a new layer with the function dropout.

22See layers initializers. By default, Keras uses in the dense layers the weight glorot uniform.

31

https://keras.io/api/callbacks/
https://keras.io/api/callbacks/early_stopping/
https://keras.io/api/callbacks/early_stopping/
https://www.tensorflow.org/api_docs/python/tf/keras/initializers/HeUniform
https://keras.io/api/layers/activations/
https://www.tensorflow.org/api_docs/python/tf/keras/activations/sigmoid
https://keras.io/api/layers/regularization_layers/dropout/
https://keras.io/api/layers/initializers/
https://keras.io/api/layers/core_layers/dense/

3.2. Convolutional Neural Networks

The previous section shows how the neurons in ANNSs consist mainly of a fully connected
structure. However, this feature of ANNs can represent a problem for images with large
dimensions. For example, (Géron, , p- 595) provides an illustrative case in which
ANNSs can suffer from scalability problems. In the case of images with dimension 100 x
100 (For a total of 10 000 pixels), if the first hidden layer only has 1 000 neurons, we will
have a total of 10000 - 1 000 = 10000000 fully connections between the input and first
hidden layer.

Given the high number of connections, we could reduce the number of neurons in the
first hidden layer. Nevertheless, if we decrease the number of neurons, we will be very
restrictive with the information transmitted to the next layer. Even with the overwhelming
number of 1000 neurons in the first hidden layer, the selected number only represents
1% of the input information. Of course, the problem can be worst if we consider more
complex architectures.

In order to solve this potential problem, convolutional neural networks (CNNs) allow
escalating this type of data. Specifically, CNNs solve the problem using partially con-
nected layers and weight sharing. As a result, CNNs introduce two new building blocks:
convolutional layers and pooling layers.

Additionally, there are other slight differences in the architectures of ANNs and CNNis:

1. In ANNSs, every layer is composed of a long line of neurons. Given this restric-
tion, it is necessary to flat the 2D input matrix into a 1D vector resulting in a long
line of neurons. On the other hand, for CNNs, every layer is represented in a 3D
tensor, with two indices referencing the spatial coordinates (Height and width of
the matrix) and a third index used for indicating the number of channels. Typical
applications of CNNs are based on classifying images under the scheme of 3 chan-
nels RGB. However, in our specific application, we only consider one channel?.
This change in the input form considerably improves the match of neurons with the
consecutive layers regarding their corresponding inputs.

2. Once the CNN has learned to recognize a pattern in one location, it can realize it in
any other area. On the other hand, when an ANN has learned to recognize a pattern
in one place, it can only remember it only in that particular location. We call this
property as local stationarity, and it is inherited from the local invariance present
in the images.

The following sections will explore the new characteristics associated with CNNSs.

ZCalled gray-scale.

32

3.2.1. Convolutional layer

The idea of this section is to present the most relevant hyperparameters in calibrating
spatial convolution over images. The function offered by Keras for dealing with images
is Conv2D, and we will focus on the first four parameters: filters, kernel_size,
strides, and padding.

There are a lot of theoretical aspects related to this kind of layer. Maybe, the most
relevant issue constitutes the difference of the term convolution in the context of neural
network and the rest of the mathematical literature. Sections 9.1 and 9.5 of Goodfellow
et al., provide deep detail about the differences.

As we mentioned previously, the architecture of a CNN starts with an input image
with size [height, width, channels]. For example, we begin with a size picture [h, w, c].
Then, we start convolving the image. In other words, we can move an area of size [f;, f,,]
over each input image and cover each image entirely.

The f, X f,, area moved over the entire image is named a filter or Kernel. This filter is
composed of weights that are trained and updated during the modeling process. This fil-
tering process is crucial in the procedure of detecting features in the image. For the cases
on which a determined characteristic is present, the value obtained in the convolution will
be a high number. On the other hand, if the feature is not present, the output will be lower.
Another important parameter that we must set is how much the filter should move at each
step. This parameter corresponds to the stride defined as the number of positions that we
shift the filter in each moving with size s, X s,,].

Finally, the output matrix after the pass of the filter over the entire input image is
called featured or activation map. The feature map will have the convolutions of the
filter over the whole picture. From the previous process, the dimension of the feature map
is [h— fi, + 1,w— f,, + 1]. So, the feature map has fewer dimensions than the original
spatial dimension of the original input [/, w].

Specifically, we are losing the pixel on the border of the image. So, we can solve
this problem by adding another parameter called padding. In padding, we add some
pixels to an image that is getting processed. The most common practice for equaling the
same height and width as the previous layer is adding p zeros to each side of the input
boundaries. This approach is called zero padding. In the case of Keras, we have two
options for this parameter:

1. Same: The output size of the activation map is equal to the number of input neurons
divided by the stride. We are padding evenly with zeros to the boundaries left/up and
w and peg = [w-‘ (With s for the stride, I for
the input image and F for the filter size) zeros respectively.

right/down with p,, =

One particular case occurs when s = 1. Under this setting, the layer’s outputs will have
identical spatial dimensions (width and height) as its inputs. This special case justifies the

33

https://keras.io/api/layers/convolution_layers/convolution2d/

name same in the parameter.

2. Valid: The convolutional layer does not use zero paddings (p = Psarr = Pena =
0) and may ignore some rows and columns at the bottom and right of the input image
(depending on the stride).

To sum up the previous configuration, we can set the following parameters associated
with the convolutional layers and the dimension of the feature map:

p—

. Image size: [height, width, channels] = [h, w, c].

2. filters: Number of filters = f,.

98]

. Filter size: [height, width] = [f;, f,,].

N

. Stride: [y, Sy].

9,

. Padding: same, valid.
The output of the convolutional layer (the activation map) has dimension:

h— + Dstart t Pen W = Jw + Dstart T Den
Ji Psari ¥ Pend 4 fpupdﬂ’fn

Sn Sw

Figure 3.3 shows two possible examples of configurations of the convolutional layer.
The input in both case is a image of dimension [h =5, w = 7, ¢ = 1] with padding equal
to same. (zero padding)

In figure 3.3a, we set one filter of size [f, = 3, f,, = 3], stride s = 5, = 5, = 1 and
padding p = pgar = Pena = 1. The dimensions of the feature map will be:

h+2p-— +2p— fu
14 fh+1:5’ w+2p f+1:7,fn=1

N S

For the figure 3.3b we apply a stride size s = s;, = s,, = 2, resulting in a feature map
with dimension [3, 4, 1].

In deep convolutional layers, this computation can be considerably complex with a
high computational cost. As a result, we can face the problem of scalability again. To
solve this problem, we can use the pooling layer that we will see in the next section.

34

Figure 3.3

Convolutional layers

(a) Connections bewteen layers and zero (b) Reduncing dimensionality using a
padding. stride of 2 and zero padding.

Image source: Géron (, p- 597)

3.2.2. Pooling Layer

Given the complexity that a deep CNN can reach, especially the number of filters of
the associated feature maps that result from a convolution layer, we can decrease the
dimension of this feature map using a pooling layer.

We can interpret a pooling layer like a downsampling procedure. From the feature
map obtained after a convolutional layer, the pooling layer takes this input and creates an
image with a lower resolution. So, for each feature map, we get a set of pooled features,
where the size of the pooled filter is smaller than the feature map’s size.

Similar to the convolutional layer, the relevant parameter of the pooling layer are
its size (pool_size), the stride, and the padding type. However, the most pertinent
differences concerning the convolutional layer are the absence of weights and the election
of an aggregation function.

The maximum and average aggregation functions are the most common options. A
different Keras function is required for the aggregation chosen, in our case, MaxPool-
ing2D, and AveragePooling2D, respectively.

The left panel of figure 3.4 exhibits how the pooling layer operates on every input
channel independently. As a result, the depth of the input and output from this layer is
the same. The right panel of figure 3.4 presents a max layer with a 2 x 2 pool_size
kernel, stride 2, and no padding. In this case, only the maximum input in each receptive
field pass to the next layer. Additionally, the max-pooling layer drops the rest of the
information. Moreover, because of the stride of 2, the output image has half the height
and width of the input image.

35

https://keras.io/api/layers/pooling_layers/
https://keras.io/api/layers/pooling_layers/max_pooling2d/
https://keras.io/api/layers/pooling_layers/max_pooling2d/
https://keras.io/api/layers/pooling_layers/average_pooling2d/

Figure 3.4
Left: Downsampling property of pooling layers. Right: Max pool layer, of size 2 X 2 and stride 2.

224x224x64 ; .
i Single depth slice
pool g | | |1]1]2|4
Il"’ max pool with 2x2 filters
56| 7|8 and stride 2 6 | 8
1 I 312110 3|4
1| 2 (RS
224 downsampling He
112
224 y
Image source: Gilon (, Convolutional Neural Networks (CNNs / ConvNets))

3.3. Simulation case 1: Female mice diet

In this section, we consider two Monte Carlo simulations scenarios using the female mice
data set. We design two experiments considering a MHT problem with m = 100 and
m = 1000 features. As in the case of simulation 1.2 of section 2.6, the null hypothesis
Hy; consists that diet i does not affect weight. The alternative hypothesis declares that
diet i is effective. Moreover, we rerun the tests with a sample size of N = 12. Finally,
in both cases, we consider a range of several effect sizes and the true proportion of null
hypothesis py = =2.

Simulation 1.3: m = 100 features

Figure 3.5 shows independent simulations of two MHT problems. In the left upper panel,
we observe an input X; with size 100 x 100 from sampling 12 mice. The effect size, in
this case, is a difference of 3 grams, and the alternative hypothesis is valid for m; = 10
cases. The right upper panel shows the distribution of the true response after ordering
the p-values®*. In this case, the smallest p-value is assigned to a feature where the null
hypothesis is true, resulting in a potential false positive.

The lower panel of figure 3.5 reflects the X, representation of m = 100 features with
a substantial effect size of 5 grams and a true proportion of the alternative hypothesis of
5%. Based on the image representations X; and X,, we notice how considerable high
effect sizes are related to a more separable display of the alternative and null hypothesis.
The smaller the effect size, we see a more soft transition from the alternative to the null
hypothesis.

24Consequently, ordering the LBBF values.

36

Not sig- | Significant Not sig- | Significant Not sig- | Significant
nificant nificant nificant

True | 90 0 True | 95 0 True | 185

False| 10 0 False| 2 3 False| 12 3

Table 3.1

Summary results of the two previous simulations. Right table contains the micro performance of

both simulations.

Figure 3.5
Two independent simulations of m = 100 features with different effect size and pro-
portions of true null hypothesis.

Representation of two simulations and their response (Female mice diet)

X, (Effect size of 3 grams)
o 10°

po = 0.9 true null hypothesis

= L
o 2‘0

5

Z

40 &0 B 100

=

1072

o 20 40 60 80
X3 (Effect size of 5 grams)

107

po = 0.95 true null hypothesis

5

g

0 20 P &0 a0 100

=

1072

The left and central panel of table 3.1 shows the results after applying the BH pro-
cedure with a control level of ggpr = 0.05. For representation X;, the BH takes a con-
servative path and does not make any rejection. For X,, the BH rejects correctly three of
the five significant features. The right panel of table 3.1 shows the confusion matrix for
quantifying the statistical declaration of all the classes jointly under a micro-averaging
perspective. We compute the confusion matrix considering all the features and the MHT
problems. Under this perspective, only three of fifteen hypotheses are true positives.

With the previous explanation, now we can extend the number of independent tests.
Our simulation example considers 96 different effect sizes ranging from 0.5 to 10.0 grams
with a difference of 0.1 grams between the effect sizes. The proportion of the true null
hypothesis consists of 10 different values ranging from 0.9 to 0.99 with a distance of 0.1.
As a result, we have a total of 96 = 10 = 960 simulated scenarios.

37

Then, from the previous data, we split our observations into training and testing data.
In particular, we consider 20% (192 observations) for testing. From the remaining 80%
of the data (768 observations), we use 10% (77 registers) as validation data.

Figure 3.6 shows the distribution of the proportion of null and alternative hypotheses
(left panel), the assignments of effect sizes (central panel), and the balance of true null
hypotheses among the training and testing sets.

Figure 3.6
Distribution of the null hypothesis, Effect size and Proportion of Hy among the train and test set.

Distribution relevant values in train and test set
Null and Alternative hypothesis Histogram of effect size Proportion where null Hypothesis is true

. train

0
o000 S 0

=

60000

3

50000

g B

40000

Frequency
Frequency
=R

8

Frequency

30000

20000

~
=

10000

=1

HO

o
2 4 & 8 10 0.90 0.91 0.92 0.93 0.94 095 0.96 0.97 0.98 099
Hypothesis Effect size (ES) Proportion HO

From the left panel of figure 3.6, 91 104 observations (72 876 in training and 18 228
for testing) correspond to the genuine cases where the diet does not affect. On the other
hand, 4 896 diets (3 924 in training and 972 in testing) are influential among the range of
effect size and proportion discussed previously.

Given the relatively small number of features and observations, it is possible to cali-
brate an ANN model. The left panel of figure 3.7a shows a simple model with two hidden
layers using 500 and 250 neurons and a dropout layer with a probability of 0.5. The out-
put layer consists of 100 neurons, with one label for each feature. The total number of
parameters is around 5 million parameters.

Then, figure 3.7b shows a simple architecture for a CNN model. In this case, the
model starts with a convolutional layer where we apply two filters of size 2 X 2, stride = 1,
and zero padding. Next, we use a maximum pooling layer of size two, stride equal to two,
and zero padding. With this configuration, the number of parameters is reduced to half.
Then, we use a similar structure of the ANN after the convolutional layer. Additionally,
we add a dropout layer to reduce the risk of overfitting. The total number of parameters
is around 2.6 million neurons.

Finally, for fitting both models, we use 50 epochs and the early-stopping feature.
After the calibration process, the AUPRC for the ANN and CNN is 0.9 in the training set,
resulting in a favorable model.

38

0.0001 0.001 0.005 0.01 0.025 0.05 0.1 02 03
Uncorrected 372 518 827 877 1313 1363 2767 4923 6553
Bonferroni 104 226 331 372 434 475 518 760 785

BH 152 297 413 457 562 650 758 1019 1139

ANN 433 657 850 984 1288 1801 2754 4608 6430

CNN 427 639 837 981 1317 1797 2749 4608 6427
Table 3.2

Outcomes when testing m = 100 null hypothesis for specific significance levels.

Figure 3.7
Neural networks architectures for m = 100 features.

(a) ANN architecture (b) CNN architecture

Model: “sequential” Model: "sequential"

Layer (type) Output Shape Param # Layer (type) Output Shape Param #
flatten (Flatten) (None, 1e@08) e conv2d (Conv2D) (None, 1ee, 1ee, 2) 20
dense (Dense) (None, 5ee) 5000500 max_pooling2d (MaxPooling2D) (None, 50, 50, 2) 2]
dense_1 (Dense) (None, 250) 125258 flatten (Flatten) (None, 5000)]
dropout (Dropout) (None, 250)] dense (Dense) (None, 5@0) 2500500
dense_2 (Dense) (None, 1ee) 25100 dense_1 (Dense) (None, 258) 125258
Total params: 5,158,850 dropout (Dropout) (None, 25@) 2]
Trainable params: 5,156,858

Non-trainable params: @ dense_2 (Dense) (None, 1@8) 25100

Total params: 2,650,870
Trainable params: 2,650,870
Non-trainable params: @

Then, we proceed to compare the trained models on the test set with the traditional
procedures. We start checking the total rejections and the type-I and type-II error rates
for the thresholds of our significance space. Table 3.2 shows the cumulative number of
significant calls for the various levels of @. In the traditional approach, the uncorrected
method has the most cases of rejections. On the other hand, the correction procedures
reflect the conservative number of rejections. Then, when we focus on the two Deep
Learning approaches, we observe a similar behavior. Additionally, if we compare both
DL frameworks with the uncorrected hypothesis test, we notice that at level 0.05, the
rejections are even greater than the hypothesis testing without the correction.

The conservative behavior of the Bonferroni and BH corrections is more visible in
table 3.3. Even for a significance level of 0.05, the FPR was equal to 0. On the other
hand, the Type-I error rate for the uncorrected and deep learning approaches is close to
the significance level a.

However, the strict control of the corrections methods over the Type-I error is paid
with high values of Type-II errors. Table 3.4 shows how the Deep Learning methods
considerably have the lowest values.

39

0.0001 0.001 0.005 0.01 0.025 0.05 0.1 02 03
Uncorrected 0.00 0.00 001 0.01 0.03 0.03 0.11 0.22 0.31
Bonferroni 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01
BH 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.02
ANN 0.00 0.00 0.00 0.01 0.02 0.05 0.10 020 0.30
CNN 0.00 0.00 0.00 0.01 0.02 0.05 0.10 020 0.30
Table 3.3
Simulation 3: Type-I error rate for m = 100 features.
0.0001 0.001 0.005 0.01 0.025 0.05 0.1 02 03
Uncorrected 0.62 047 035 030 024 0.19 0.13 0.08 0.07
Bonferroni 0.89 0.77 066 062 055 051 047 042 0.39
BH 0.84 0.69 058 053 047 042 036 030 0.26
ANN 0.56 034 022 0.17 0.12 0.07 0.03 0.01 0.00
CNN 0.56 036 023 0.18 0.11 0.08 0.04 0.01 0.00
Table 3.4

Simulation 3: Type-II error rate for m = 100 features.

A complete overview of the model is available in figure 3.8. Based on the results of

the rightmost panel, we notice how the Deep Learning methods based on the ANN and
CNN architectures have the greatest values for the AUPRC?. Moreover, under the Deep
Learning approaches, it is possible to simultaneously reach precision and recall values

greater than 80%. In the second group of procedures, the uncorrected and the BH method

also provide a good performance level. It is vital to notice that the BH provides a better

recall around a precision level of 0.8 than uncorrected hypothesis testing but significantly

lower than DL approaches. Finally, the Bonferroni correction provides an acceptable

performance level. However, we reach a maximum recall level close to 70%.

Figure 3.8

Comparison traditional procedures and deep learning methods for m = 100 features.

Comparisen traditional procedures and Deep Learning approaches

Total Rejections

Precision-Recall Curve

— BH
— ANN
— CHN

—— Uncorrect
Bonferroni

ted

ROC Curve
10
08 f

o
&

/
H /" —— AUROC-UHT = 0.94
AUROC-Bonf = 0.01
—— AUROC-EH = 0.85
—— AUROCANN = 0.89
—— AUROC-CNN = 0.99
baseline

10

08

c 06
=)

04

0.2

00

—— AUPRC-UHT = 0.78
AUPRC-Bonf = 0.67
—— AUPRC-BH =0.77
=—— AUPRC-ANN = 0.90
=—— AUPRC-CNN = 0.90
Baseline = 0.05

0.0

0.2 04 06
Significant values

0.8 10 0o 0.2 04 0.6 0.8 10
False positive rate (FPR)

2In particular, the value of the AUPRC in the test set is the same that the training dataset.

40

The left panel of figure 3.8 shows the total number of rejections from the 19 200 hy-
potheses available in the test set. Until the 0.4 significance level, the uncorrected and the
Deep Learning methods follow a similar pattern. Then, the DL approaches increase, but
the path is always lower than the UHT. Also, we notice a step behavior in both meth-
ods. In addition, for the cases of the correction procedure, the BH procedure follows
the slower rejection pattern. Last, the Bonferroni method has the lowest power of all the
forms, resulting in few rejections.

The central panel of figure 3.8 shows the ROC and AUROC. As mentioned in section
2.5, we observe almost a perfect metric value of 1 in ANN and CNN and a considerable
high value for the hypothesis testing without correction.

In the appendix section 6.2, we show three visualizations that provide crucial insights
about the previous CNN. Figure 6.1 shows the case where we do not consider the ordered
lower bound Bayes factors, and their position is assigned randomly. In this case, the AU-
ROC and AUPRC are considerably lower than the sorted version. This small simulation
shows the relevance of the geometric structure in the accuracy of the model. Figure 6.2
shows three distinct image representations used as input for the previous CNN model.
Suppose we only use as input of the CNN a diagonal matrix composed of the scaled
LBBFs?. In that case, the AUPRC is considerably low than the value obtained in the
proposed setting in expression (2.10).

On the other hand, if we consider only the quotients among the different LBBFs?’; we
obtain similar results in comparison to use the complete matrix. As a result, the LBBF
quotients’ relationship is crucial in the accuracy of the model. Furthermore, figure 6.3
shows the AUPRC for different effect sizes. Independently of the difference in grams
between the groups, the CNN always has the best performance compared to traditional
procedures.

Finally, If we simulate for twenty times, table 3.5 shows the average AUPRC perfor-
mance (with the sample standard deviation) and the range of values for the area below
the precision-recall curve. Under this experiment, the version of the CNN is considerable
better than the other methodologies.

As we will review in the following simulation, increasing the number of features adds
more complexity to the proposed models.

Simulation 1.4: m = 1 000 features

In this fourth simulation, we study a complex MHT considering m = 1000 features, a
sample size of N = 12, an effect size ranging from 2 to 15 grams (with a step distance

26Remember that the originals LBBF were divided by the maximum component of the matrix represen-
tation.

?"In other words, the main diagonal of input matrix is zero. We can extend this input even only to the
upper triangular matrix of the quotients of the ordered LBBFs.

41

Table 3.5

Mean SD Min Max
UHT 0.76 0.0145 0.64 0.88
Bonferroni 0.65 0.0131 0.55 0.78
BH 0.73 0.0125 0.61 0.85
CNN 0.84 0.0116 0.74 0.93

Simulation 3: performance AUPRC for 20 simulations.

of 0.1), and three different proportions regarding the true null hypothesis of 0.9, 0.95 and
0.99. Given the high number of features, the total number of simulated observations is 390
independent problems, with 281 used for training, 31 for validation, and 78 for testing.

This stage aims to show how to deal with MTH problems with a considerable num-
ber of features. Figure 3.9a reflects an architecture with ANN. The depth of the neural
network is four layers, with two hidden layers of 550 neurons and an output layer with
1 000 neurons. We also add a dropout layer. Although we are considering only 1 550 total
neurons, the number of parameters in the neural network is around 300 million.

Figure 3.9

Neural networks architectures for m = 1000 features.

(a) ANN architecture (b) CNN architecture
Model: "sequential” Layer (type) Output Shape Param #
Layer (type) output shape Param # Loniza (comvady (Nome, 1068, 1000, 29 20
flatten (Flatten) (None, 1060868) e max_pooling2d (MaxPooling2D) (None, 508, 580, 2))
dense (Dense) (None, 300) 360000360 _,ny2d 1 (Conv2Dd) None, 5@, 509, 4) 76
dense_1 (Dense) (None, 250) 75250 max_pooling2d_1 (MaxPooling2 (Mone, 258, 258, 4) e
dropout (Dropout) (None, 258) e conv2d_2 (ConvaD) Mone, 258, 250, B) 296
dense_2 (Dense) (None, 1809) 251600 max_pooling2d_2 (MaxPooling2 (None, 125, 125, B) 8
Ii:iiaETZEEZ;aiE?’i:Zjizz,ssa conv2d_3 (Convad) (None, 125, 125, 16) 1168
Non-trainable params: @ max_pooling2d_3 (MaxPoolingl (None, 63, 63, 18) -]
conv2d_4 (Conv2D) (None, B3, 63, 32) 4848
conv2d_5 (Conv2D) (None, B3, 63, 32) 9248
max_pooling2d_4 (MaxPooling2 (MNeone, 32, 32, 32)]
conv2d_6 (Conv2D) (None, 32, 32, 32) 2248
max_pooling2d_5 (MaxPooling2 (None, 16, 16, 32) @
flatten (Flatten) (None; 8192) [:]
dense (Dense) (None, 32@) 2457302
dense_1 (Dense) (Nene, 25@) 75250
dropout (Dropout) (Mone, 25@) =]
dense_2 (Dense) (None, 1869 251800

2,808,846
2,808, 846
Nen-trainable params: @

Total params:
Trainable params:

Figure 3.9b shows a CNN created for dealing with this problem.

The model architec-

42

ture contains:

e Seven convolutional layers.

e Six pooling layers. The max-pooled is used for summarizing the outputs of the
convolutional layers.

e Three fully connected layers, with a total of 1 550 neurons.

The size of this architecture can made overfitting a significant problem. We add a
dropout layer as a regularization technique and early stopping. The number of parameters
under CNN architectures reduces drastically to 2.8 million.

For measuring the performance of the previously trained model, we compare the
model with the data provided in simulation 2 of section 2.6. Although we have a small
training data set, figure 3.10 reflects that the performance of the CNN model over this par-
ticular evaluation is comparable with the results of the traditional methods. Consequently,
we have a considerable margin for improving the accuracy of the CNN architecture, but

we can reach a competitive model in contrast to the classical MHT methods.

Figure 3.10

Comparison traditional procedures and deep learning methods for m = 1000 features.

Rejections (R}

1000

800

400

200

Total Rejections

ROC Curve

Performance CNN vs Traditional methods (Female mice diet)

Precision-Recall Curve

— Uncorrected

Bonferroni

— BH

— CNN

Tue positive rate (TPR)

—— AUROC-UHT = 087
AUROC-Bonf = 0.00

—— AUROC-BH =086

—— AUROC-CNM = 091
baseline

Precision
=
@

=
=

02

—— AUPRC-UHT = 0.57
AUPRC-Bonf = 0.09
—— AUPRC-BH = 0.57
—— AUPRC-CNN = 0.61
Baseline = 0.10

00

02

04 0.6
Significant values

08

10

00 02 04 06 05 10
False positive rate (FPR)

oo

0.0

0z 0.4 06 08 10
Recall

43

4. SIMULATION CASE 2: NORMAL POPULATIONS

This chapter provides another employment of the CNNs applied into MHT problem:s.
On this occasion, we create a simulation following the ideas of example 4.1 in Cabras,
. We define X; ~ N(u;, %), for i = 1,...,m being m independent normal populations
with unknown variance 0'12. We want to test: {Hy; : u; = 0 versus y; # 0 \7’0'!2 > 0},i =
1,...,m. Under these experiments, the p-values are calibrated in the U(0, 1). In order to
observe the performance of a stable?® CNN architecture, we use the CNN designed in
figure 3.7b for simulation 1.3 of the previous chapter to a different data set. We consider a
study of the following scenarios with o> = 1 and 150 simulated normal populations under
the following assumptions:

e Number of sample units: N = 20,
e Number of features: m = 50, 100 and 150,
e Proportions true null hypothesis: py = 0.9,0.95 and 0.99,

e Effectsize: y; = us where uy = 0.5,1 and 2.

Before evaluating the CNN directly in the previous dataset, we train the CNN with
another independent set of normal samples. Using the same number of sample units
N = 20, we define three different CNNs models?®. In each model, we consider 22 alter-
native means ranging from 0.3 to 2.4 (with a distance of 0.1 units among them) and ten
proportions of true null hypothesis between 0.9 and 0.99. For the features m = 50 and
m = 100 we simulate 200 different samples, resulting in 44 000 simulated data sets*’. For
m = 150, the number of simulations is 150 datasets>".

Figure 4.1 shows the evaluation of the trained CNNss in the initially described dataset.
We use it as a Benchmark for measuring the performance of CNN, comparing the results
with the BH procedure. A priori, the behavior of the CNN is similar to the BH procedure.

However, we can extract two main insights. First, if we focus on the models with
ua = 0.5, the AUPRC for BH and CNNs is generally wrong. However, we notice that the
CNN is equal to the proposed baseline p; = m;/m. BH is always lower than the baseline.
This behavior is the same independently of the number of features m. To put it another
way, under the presence of low statistical power for detecting the alternative hypothesis,
CNN better catches the cases where the null hypothesis is false than the BH procedure.

8By stable, we mean that we can apply the same architecture and parameters to several MHT problems.

20ne for each value of m = 50, 100, 150.

30We have 22 * 10 = 220 different scenarios. Then, we consider 200 times each scenario.

3l'We decrease the number of simulations due to restrictions in Colab. The total number of available
datasets, in this case, is 22 = 10 * 150 = 33 000.

44

Lastly, for us = 1 and 4 = 2, we notice how the BH is better than the CNN alternative,
but we do not find significant differences between the methodologies.

From the previous simulation, we extract several conclusions. First, there is still a
margin for improving the CNN calibration. Second, this particular evaluation suggests
that maybe it is necessary to design a new architecture depending on the number of fea-
tures m and the specific dataset’. Third, although we have different datasets with the
same number of elements (m = 100), the hyperparameters are not necessarily the same™*.
Fourth, similarly to simulation 1.4, we obtain a complete competitive method compared
to the traditional approaches.

Figure 4.1
Precision-Recall curves after testing zero normal mean with unknown variance. Top scale: True

proportion of null hypothesis po. Left scale, number of features m = 50, 100, 150. Green lines refers

to the BH procedure and blue is used for the CNN method.

Precision-Recall Curve (Normal populations)

Proportion true null hypothesis: pp =09

Proportion true null hypothesis: pg =095

Proportion true null hypothesis: pg =099

10 —_— 10 — 10 —

R N
Sy |
o e N
081 * pNS R a 081 * I
----- l05)=006 . e (051003 . e w031=001 R\
\ . Ly
- pfl)=083 b =075 ““1 - ull)=058 '.‘.‘
\ 3
2 061 — wi2)=100 S 061 — mRi=100 N 06 {— wi2)1=099 W
\ %
[l051=010 IO I AR i05)=008 L I I [l05)=002 YN
") w— te
£ o |7 wm=oa ‘.1“ pa | T mL=0T2 ‘\ N og |77 wmi=0se o
] — wm=100 4 — 2b=100 W] — wm=100 Vo
Baseline = 0.10 [Baseline = 0.06 N Baseline = 0.02 Vol
02 Y 02 Y 02
\
¥
o S—
00 00 00
0z 04 06 08 10 04 06 08 10 04
10 = 10] === 10 -
e r— — RS — e
‘-.._\“ : . HVa|

084} %, psd i e ogd i e

il al0 51 =005 R I i [05)=003 Y gl al0 51 =001
e ull)=084 \ - pllh=074 Y —- Wil)=085 .

S 06— wii=100 " 06— wi2i=100 .“._‘ 06— w@=033__\
T e wi051=010 ‘.n ----- w05} =005 woo e wi0s)=001 "R
E g | w0 [y pa | 7T =0T \‘:‘ 0g | 7 =03 |"\.“
— wi21=100 & — i21=092 LY — wi21=099 L
Baseline = 0.10 Baseline = 0.05 ‘\'t‘ Baseline = 0.01 ‘x\ o,

024} 02 Y 02 VN
i : - \\ L
[i i 3
H Ena

0.0 5 oo L 0.0
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10

10 = 10 10

= Fommmaan
e

08 * \\ 08
----- wl051=005 0 o a0 5)=041
= 1) =085 “.\‘\ - llh=0T6 .y - ll)=048

2 06 { = wi2)=100 \"\ 0.6 | = mRi=100 W 0.6 { == W2)=100 | %
N L
[- 100 5)=010 R I, Jr 1:I0 5} =005 W e wWl05)=001 | S
! \ ‘.
£ - Wl =084) - plli=074 e - wily=040 NN

04 [04 Y 04 ~. b

— 2)=100 v — (2 =080 ‘\“.\ — 2)=087 '\‘ ‘..‘
Baseline = 0.10 1 Baseline = 0.05 W Baseline =001 %

02 \ 02 5 02 R
. \‘ "-_ h\-‘
¥ e Bt

00 15 001+ 00
0o 0z 04 06 08 10 00 0z 04 06 08 10 0o 02 04 06 08 10

Recall Recall Recall

$Even in the cases where the number of features is relatively close.

3Remember that we are using the optimal hyperparameter founded in simulation 3 for the female mice

diet.

45

5. CONCLUSION

During this project, we explore a new alternative for studying MHT problems imple-
menting Convolutional Neural Networks. Starting with calibrated p-values and using the
Sellke et al., representation, we create a square matrix with size equal to the m fea-
tures for the p-values calibrated as the quotient of the ordered lower bound Bayers factors.
Then, we normalize the quotients on the scale of 0-1 by dividing each pixel of the matrix
by the maximum LBBF quotient. We use the word pixel given the analogy of the matrix
representation with an image using one channel. This image representation contains in the
diagonal the calibration of the p-value as odds of H, to H;. Moreover, it also incorporates
in the off-diagonal the interaction among the quotients. The scaled version of the LBBF
quotients corresponds to the scaled matrix of relative evidence among the tests.

Considering the sorted LBBF and the relationship between the quotients, the idea
is to use CNNs to solve MHT problems in a simulated context where the user knows
the ground truth. Based on this approach, we generated two simulation cases. In the
first case, we make simulations sampling the true control female mice population. In
particular, with N = 12 sample units, we guarantee that we have enough statistical power
in our experiments. In this first stage, we also split our analysis considering m = 100 and
m = 1000 features. For the first scenario with one hundred features, we create a simple
CNN model with one convolutional layer, one pooling layer, and two hidden layers. Next,
we proceed with the hyperparameter tuning for solving this problem efficiently, resulting
in 500 and 250 neurons in the hidden layers, respectively. Then, we include an output
layer where the number of neurons depends on the number of features. Based on the
20 generated simulations, we notice how the CNN is highly efficient in detecting the
significant features compared to the traditional procedures. In the second stage, we try
to solve the same problem but considering one thousand features. This exercise aims to
show how to scale the architecture of CNN with a high number of features. The complex
architecture used in this case results from a considerably high number of parameters and
computational restrictions. The comparison of the CNN model with the other procedures
has no significant improvement in this particular evaluation.

In the second simulation exercise, we used the same architecture designed for the pre-
vious simulation but applied it to detect the differences between two normal populations.
However, in this particular evaluation based on 50, 100, and 150 features, the results are
very similar to the BH procedure. We obtain a crucial insight on this secondary simula-
tion: The best hyperparameters obtained in one calibration are not necessarily the same
for other MHT problems.

Although the first simulation gives satisfactory results of the possible application of
CNNs into MHT problems, we must also be aware of this approach’s potential draw-
backs. The first problem is innate to the Deep Learning procedures, and it is related to

46

the loosing of inferential capabilities. Technically, the results obtained under the CNN
can be considered as a black box for the researchers. The second obstacle is related to
the computational problem. Typical applications of the MHT problems are related to mil-
lions of features. Given the computational restrictions, we could only explore as many
m = 1000 features. The third difficulty is associated with the dependency of the p-values
to a known null distribution. The representation provided by Sellke et al., works
under the assumption that the p-values are calibrated under the uniform distribution.

However, the last two problems can be the source for future investigation. First, in
order to deal with the computational problem, we can use sparse models. In particular,
the matrix representation of relative evidence among tests defined in expression (2.10)
considered twice the relationship between the quotients. Under sparse models, we could
use the upper triangular matrix and explore if only one quotient correlation is enough for
training the CNN. The right panel of figure 6.2 shows a possible opportunity of success
based on the simulation exercise for the female mice diet with m = 100 features. In this
particular evaluation, we observe only a slight decrease in the AUPRC of the complete
representation compared to the upper matrix of the lower bound Bayes factors quotients.

The problem related to the assumption of calibrated p-values is solved by considering
other approaches for representing the p-values. It is possible to extend the matrix of
relative evidence among tests to cases where p-values are not necessarily uniform under
the null hypothesis. For example, in Cabras and Castellanos, , authors consider an
empirical null distribution of p-values estimated directly from the data.

In other words, with the previous strategies, it will be possible to extend the applica-
tion of CNNs to more general scenarios, including a large number of features and more
general sampling null distributions.

47

6. APPENDIX

6.1. Appendix I: The t-test for means

This section assumes two independent random variables with distributions X; ~ N(uy, 07)
and X; ~ N(uz, cr%) with unknown means and variances. The exercise will be to test the
equality of means by taking equal variance and a non-directional test. If we consider the
estimator 6 = u; — i, the hypothesis test has the form:

Hy:0=0versus H, : 6 #0 (6.1)

The estimator of 6 is simply the difference of the sample means § = X; — X, ~

N (,u1 — a0 (% + i)) In the case that we estimate o as the pooled variance:

(= DST+ (- 1S3

52
n+ny, — 2
with §7 i = 1,2 corresponding to the sample variances for X; and X, respectively, we
have the following test statistic:
X - X,
T=""22 e (6.2)
S 1 + 1
ni n

As a reference, a random variable T has #-distribution with k degrees of freedom has
the probability density function:

(i)

IO .

Finally, under a significance level of «, the critical region for the hypothesis test in

f@ =

(6.3)

expression (6.1) is C, = {|T| > 1, 4n,-2: a2}

48

6.2. Appendix II: Simulation 1.3. Female mice diet plots

Figure 6.1

Comparison of traditional procedures and deep learning methods for m = 100 features with random
assignation of the LBBF.

Comparison traditional procedures and Deep Learning approaches (LBBF not sorted)

Total Rejections ROC Curve Precision-Recall Curve
20000
—— Uncorrected 10 10
17500 Bonferroni N
— BH
R
150001 08 08
g
. 12500 =3 —— AUPRC-HTU =078
€ 8 o5 - 08 AUPRC-Bonf = 0.67
£ 10000 H s —— AUPRCBH = 0.77
B Z g +++ AUPRC-ANN = 0.38
b ki & -+ AUPRC-CNN = 0.42
&2 7500 8
= 50 04 Baseline = 0.05
2 —— AURDC-HTU = 0.94
5000 AUROC-Banf = 0.01
—— AUROCBH =085
500 02 ==+ AUROC-ANN = 0.75 02
-- AUROC-CNN = 0.78
0 - baseline
0.0 ¥ 00
0.0 0.2 0.4 0.6 08 10 0.0 0z 0.4 06 08 10 0.0 0z 04 0.6 03 10
Significant valuss False positive rate (FPR) Recall

Figure 6.2
Precision-Recall curve and AUPRC from simulation 1.3 by components. Left: Main diagonal with scaled
lower bound Bayes Factor. Center: Matrix interaction with only the quotients of the LBBF (main diagonal

equal to zero). Right: Upper triangular matrix with the interactions form matrix in the central panel.

Precision-Recall Curve: Element analysis

Scaled Lower Bound Bayes Factors Interactions Interactions: Upper triangular
10 —— AUPRC-CNN = 0.255 10 10
Baseline = 0.051
e Fscore

08 08 08
g 06 g 06 1 —— AUPRC-CNN = 0.896 5 061/ —— AUPRCCNN = 0.821
2] Baseline = 0.051 2 Baseline = 0.051
o o F o F
2 £ e Fscore 14 e Fscore

04 04 04

0z 02 02

00

00 02 04 06 08 10 0.0 02 04 06 08 10 00 02 04 06 08 10
Recall Recall Recall

Figure 6.3
Comparison of traditional procedures and deep learning methods for m = 100 features with different

effect size. Left: Small effect size, ranging from 0.5 to 2 grams. Center: Medium effect size ranging from
2 to 3 grams. Right: Large effect size ranging from 3 to 10 grams.

Precision-Recall curve for Effect size
Small (Difference grams: From 0.5 to 2) Medium (Difference grams: From 2 to 3) Large (Difference grams: From 3 to 10)
10 —— AUPRC-UHT =0.08 104
AUPRC-Bonf = 0.00
—— AUPRCBH = 0.07
. —— AUPRC-CNN = 0.25

= AUPRC-UHT = 0.32 10
AUPRC-Bonf = 0.06

—— AUPRC-BH = 0.34

—— AUPRC-CNN = 0.66

Baseline = 0.05 va Baseline = 0.05 08
— AUPRCUHT = 092
5 06 506 5 06 AUPRC-Bonf = 0.85
§ § § —— AUPRC-BH = 0.92
£ £ £ —— AUPRC-CNN = 0.97
04 04 04 Baseline = 0.05
02 02 02
00 00 00
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
Recall Recall Recall

49

BIBLIOGRAPHY

Aghaebrahimian, A., & Cieliebak, M. (2019). Towards integration of statistical hypothe-
sis tests into deep neural networks. Arxiv.

Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical
and powerful approach to multiple testing. Journal of the Royal Statistical Society,
57(1), 289-300.

Brodersen, K. H., Ong, C. S., Stephan, K. E., & Buhmann, J. M. (2010). The balanced
accuracy and its posterior distribution. 20th International Conference on Pattern
Recognition, IEEE.

Cabras, S. (2016). A markov chain representation of the multiple testing problem. Statis-
tical methods in Medical Research, 27(2), 364-383.

Cabras, S., & Castellanos, M. E. (2017). P-value calibration in multiple hypothesis testing.
Statistics in Medicine, 36(18), 2875-86. https://doi.org/10.1002/sim.7330

Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Routledge.

Efron, B., & Hastie, T. (2016). Computer age statistical inference, student edition: Algo-
rithms, evidence, and data science. Cambridge University Press.

Ferrari Dacrema, M., Parroni, F., Cremonesi, P., & Jannach, D. (2020). Critically examin-
ing the claimed value of convolutions over user-item embedding maps for recom-
mender systems. Proceedings of the 29th ACM International Conference on Infor-
mation and Knowledge Management. https://doi.org/10.1145/3340531.3411901

Géron, A. (2019). Hands-on machine learning with scikit-learn, keras, and tensorflow:
Concepts, tools, and techniques to build intelligent systems. O Reilly Media.

Gilon, Y. (2021). Cs231n convolutional neural networks for visual recognition.

Goodfellow, L., Bengio, Y., & Courville, A. (2016). Deep learning [http://www.deeplearningbook.
org]. MIT Press.

Irizarry, R., & Love, M. (2021). Data analysis for the life sciences. Leanpub.

Koyejo, O., Ravikumar, P., Natarajan, N., & Dhillon, I. S. (2015). Consistent multilabel
classification. Proceedings of the 28th International Conference on Neural Infor-
mation Processing Systems - Volume 2, 3321-3329.

Mary, D., & Roquain, E. (2021). Semi-supervised multiple testing.

Molina-Peralta, I., & Garcia-Portugués, E. (2021). A first course on statistical inference.
lecture notes. Boowdown.

Roberts, D. A., Yaida, S., & Hanin, B. (2021). The principles of deep learning theory.

Sander, G.,J.,S.S.,J.,R. K., Charles, C.J. B.P, N, G. S., & G., A. D. (2016). Statistical
tests, p values, confidence intervals, and power: A guide to misinterpretations.
European Journal of Epidemiology, 31(4), 337-350. https://doi.org/10.1007/
s10654-016-0149-3

50

https://doi.org/10.1002/sim.7330
https://doi.org/10.1145/3340531.3411901
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.1007/s10654-016-0149-3
https://doi.org/10.1007/s10654-016-0149-3

Sellke, T., Bayarri, M., & Berger, J. O. (2001). Calibration of p values for testing precise
null hypothesis. The American Statistician, 55(1), 62—71. https://www.jstor.org/
stable/2685531

Verdhan, V. (2021). Computer vision using deep learning: Neural network architectures
with python and keras. Apress.

Wasserman, L. (2010). All of statistics: A concise course in statistical inference. Springer.

Williams, V., Argyriou, V., & Shaw, P. Development of pptnet a neural network for the
rapid prototyping of pulsed plasma thrusters. In: University of Viena, Austria. The
36th International Electric Propulsion Conference, 2019, September.

51

https://www.jstor.org/stable/2685531
https://www.jstor.org/stable/2685531

	Introduction
	Multiple Hypothesis Testing
	Hypothesis testing
	P-values
	Multiple Testing
	Error Procedures
	Family Wise Error Rate
	False Discovery Rate

	Performance metrics
	Simulation case 1: Female mice diet
	P-values in a Bayesian context
	Proposal: P-values representation

	Convolutional Neural Networks
	Artificial Neural Networks
	Fundamentals of ANNs
	Hyperparamerter tuning in Neural Networks
	Overfitting

	Convolutional Neural Networks
	Convolutional layer
	Pooling Layer

	Simulation case 1: Female mice diet

	Simulation case 2: Normal Populations
	Conclusion
	Appendix
	Appendix I: The t-test for means
	Appendix II: Simulation 1.3. Female mice diet plots

	Bibliography

