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MHT: Introduction

• Testing focused on large-scale data.

• Set of m > 1 features. We study each hypothesis test individually.

• Sample units (N): Number of units where the measurements are collected.
• Partition of the m hypotheses into two sets:

• H0 is true: m0.
• H0 is false: m1 = m −m0 (interesting).
• p0 = m0

m : proportion true null hypothesis. Assumption: p0 ≥ 0.9

• Evidence (against H0) statistical test: p-value.

• Calibrated p-values: Theoretical sampling null distribution is uniform.

• Focus: Difference between two independent groups. t-test.
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MHT: Outcomes when testing m hypothesis

Declared non-significant Declared significant Total

H0 True U = m0 − V V m0

H0 False T = m1 − S S m1 = m −m0

m − R R m

Table: 1. Outcomes of testing m hypothesis under a specified significance level α. (Benjamini and Hochberg,
1995)

• R = Rα: Total number of hypothesis rejected.

• V : Total type-I errors. (FP, False Discovery)

• S : Total TP (True discoveries)

• In practice: m is known, R is an observable RV and V , S are unobservable RVs.
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MHT: Classical Procedures

Classical Procedures (CP)

• CP define and control a specific error rate.

• Uncorrected Hypothesis Testing (FPR)
Rejection (RUHT ): pi < α.

• Family Wise Error Rate (FWER)
Procedure: Bonferroni correction
Rejection (RBonf ): pi <

α
m .

• False Discovery Rate (FDR).
Procedure: Benjamini-Hochberg (BH)
Rejection (RBH): p(i) <

iα
m .

Example: Application of the previous
procedures with six ordered p-values.
RUHT = 4; RBonf = 0; RBH = 2
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MHT: Problems

• Dependency of the p-value: Even a tiny cut-off for the p-value can generate many false
positives with a high probability.

• Real interest: P(H0|Data).

• Low power: Correction procedures reduce the false positive rate but increase the false
negatives considerably.

• Null distribution should be known: Classical procedures depend profoundly on the
knowledge of the null distribution.
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MHT: Alternatives

Collecting evidence

• Based on [Selke et al, 2001].

• Use calibrated p-values for defining a
lower bound Bayes Factor.

• Interpretation: Odds of H0 to H1

LBBF (p) =

{
−eplog(p) if p ≤ e−1

1 otherwise.

• Example: LBBF (p = 0.05) = 0.407,
ie H0 : 1 to H1 : 2.5. Not strong
evidence against H0!

Limitations of classical MHT procedures

• Based on [Mary and Roaquin, 2021].

• Proposal: Semi-supervised approach. User
does not known null distribution, but has
at hand a sample drawn from the null
distribution.

• Where the user can obtain this null train
sample?

• Previous experiments, expert criteria, part
of the data under test, simulations,
sampling process.
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MHT: Proposal: P-value representation

P-value representation

• Set of ordered LBBFs: Bm
{b(i) = LBBF (p(i)) | ∀i = 1, ...,m}.

• Quotient of the ordered LBBFs:
Map: Ψ : Bm →Mm×m

For each feature i = 1, ...,m:

Ψ(b(i)) =
b(i)
b(j)

= b(i)(j) ∀j = 1, ...,m.

• Scale 0-1
bmax = max{b(i)(j)}
for i , j = 1, ...,m.

• Normalized quotient:

b̄(i)(j) =
b(i)(j)
bmax

.

• Matrix of relative evidence among
test:

B̄ =


b̄(1)(1) b̄(1)(2) . . . b̄(1)(m)

b̄(2)(1) b̄(2)(2) . . . b̄(2)(m)
...

...
. . .

...
b̄(m)(1) b̄(m)(2) . . . b̄(m)(m)


• Input of the supervised algorithm.
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MHT: Proposal: Simulation

Supervised Approach

• Multi-label Classification.

• Heavy imbalanced data.

• Performance Metric: Area Under
Precision-Recall curve (AUPRC)

• Aggregation: Micro-averaging.
• How to solve the problem? CNNs.

1. Translation invariance and locality.
2. Curse of dimensionality.

Example: Matrix representation and response
of two independent MHT problems with
m = 100 features.
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CNNs: Deep Learning

Deep (and breadth)
Number of hidden layers and number of
neurons.
Basic architecture: Fully connected
neurons

Increase the features ∼ increase the
complexity of the model

Learning Adjusting the weights via
back(for)ward propagation algorithm.
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CNNs: Architecture
Convolutional Layer

• Spatial convolution over images.
• Parameters:

1. kernel_size

2. strides

3. padding

4. filters

Pooling Layer

• Downsampling procedure.
• Parameters:

1. pool_size

2. strides

3. padding

4. Type of aggregation: max, mean.
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Simulation 1: Female mice diet

Value

Population (Individuals) 225
Mean 23.89 (g)
Standard deviation 0.22 (g)
Minimum 15.51 (g)
Maximum 38.84 (g)

Table: 2. Statistical summary female mice body
weight.
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Simulation 1: Female mice diet m = 100.

• Number of features: m = 100,

• Sample units: N = 12,

• Effect size: 96 distinct values, from
0.5 to 10.0 g, with a difference of 0.1
grams.

• Proportion true H0, 10 distinct
values, from 0.9 to 0.99 (Difference
of 0.1 pp)

• MHT problem:

• H0i : Diet i does not affect weight.
• H1i : Diet i is effective.

ANN and CNN architectures

13 / 30



Simulation 1: Split train and test

• Total MHT scenarios: 960 (70% train, 10% validation, 20% test).
• Total features: 960 · 100 = 96 000.

• True H0: 91 104 diets (72 876 training and 18 228 testing)
• True H1: 4 896 diets (3 924 training and 972 testing)
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Simulation 1: Performance in test set

• Total features test set: 19 200 (H0:18 228, H1:972 )

• AUPRC of CNN (and ANN) 0.9. (Both train and test)

• DL: Precision and recall greater than 80% simultaneously in test set.

15 / 30



Simulation 2: Normal population

• Xi ∼ N (µi , σ
2
i ), for i = 1, ...,m independent populations and unknown variance σ2i .

• MHT problem: {H0i : µi = 0 versus µi 6= 0 ∀σ2i > 0}, i = 1, ...,m
• Simulation parameters:

1. Total simulations: B = 100
2. N = 20,
3. m = 50, 100 and 150,
4. p0 = 0.9, 0.95 and 0.99,
5. µi = µA where µA = 0.5, 1 and 2. and σ2

i = 1
6. Benchmark: BH procedure.
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Simulation 2: Normal Population
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Conclusions

• CNNs offers a competitive alternative of detecting significant features in the context of
MHT problems.

• Simulation case 1 (female mice diet) gives satisfactory results for detecting a higher
number of cases where the alternative hypothesis is true.

• Simulation 2, shows that we can not potentially generalize a predefined architecture to
another datasets or different number of features.

• Future analysis:

1. Not calibrated p-values: Empirical null distribution of the p-values estimated directly from
the data

2. Curse of dimensionality: Explore sparse representation
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Q & A
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Appendix 1.1: Hypothesis Testing

• Reliability: Main factors:

1. Significance level: It is the standard
of proof that the phenomenon exists
or the risk of mistakenly rejecting
the null hypothesis. Implies directly
the critical region of rejection.

2. Power: Probability of rejecting the
null when the null is false

3. Effect size: Degree to which the
phenomenon is present in the
population.

4. Sample size: Number of observed
samples from the population.
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Appendix 1.1: P-values

• Distance between the data and the model prediction is measured using a test statistic.

• P-value is the probability that the chosen test statistic (t-test) would have been at least
as large as its observed value if every model assumption were correct.

• p-values are no longer useful quantity to interpret when dealing with high-dimensional
data (Many FP with high probability, increasing the features increases the error just by
chance)

• Most common MHT methods are based on the evidence provided by test statistics and
their corresponding p-values.

• Other ways of collecting evidence? Bayes Factors (BFs).

• BF: likelihood ratio of the alternative against the null hypothesis.

• However, fully defined and interpretable BFs require heavy computational techniques for
being adjusted.

• Goal: Interpret the calibrated p-values as lower bounds on Bayes Factors.
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Appendix 1.1: Calibration of p-values: LBBF

• Under appropriate test statistic T , larger values would be evidence in favor of H1.

• Density of p under H1 should be decreasing in p.

• Consider alternative distributions for the p-values. Selke et al. procedure:

H0 : p ∼ Uniform(0, 1) versus H1 : p ∼ Beta(ξ, 1) = ξpξ−1

• Why Beta(ξ, 1)? Beta is easy to work! With ξ = 1, we have H0.

• Remember: posterior odds = prior odds × Bayes Factor.

• BF (or odds) of H0 to H1 for a given prior density π(ξ) is:

BF(p) = Bπ(p) =
p∫ 1

0 ξp
ξ−1π(ξ) dξ

• LBBF(p) = infBπ(p) = p
supξξpξ−1 = −eplog(p) for p < e−1.
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Appendix 2.1: Simulation 1: Performance for effect size

• Effect size depends on the unit of measurement (grams).

• Universal effect size index: Conhen’s d. d = |mA−mB |
s .

• Small (d = 0.2), medium (d = 0.5), large d = 0.8.
• Based on B = 2000 simulations, we compute the median ES index for the difference in

weight ranging from 0.5 to 10 grams.
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Appendix 2.2: Simulation 1: Order LBBF

• Primary assumption CNN: Compositional data (translation invariance and feature locality)

• In case that we assign randomly position of the LBBF, there is a considerable reduction of
the performance in the test set. Overfitting!
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Appendix 2.3: Simulation 1: Interaction LBBF and Sparse

models

• AUPRC-CNN test set using the complete representation: 0.9
• If we consider only the scaled LBBF, we have AUPRC-CNN = 0.26
• LBBF interaction is crucial in the performance of the models. AUPRC-CNN = 0.89
• If we consider only the upper part matrix of the representation, AUPRC-CNN = 0.82.
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Appendix 3.1: Simulation 3: Curse of dimensionality

• ANN and CNN
architectures for m =
1000 features

• ANN: 1500 neurons,
300 million parameters

• CNN: Adding several
convolutional/max-
pooling layers reduces
the total parameters
around 3 million.
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Appendix 3.2: Simulation 3: Female mice with m = 1000

features

• N = 12, ES ranging from 2 to 15 grams, (0.1 grams distance) and p0 = 0.9, 0.95 and
0.99.
• Total simulations: 390 (281 for training)
• Figure below is used only for a single prediction. Still, we have a competitive model.
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Appendix 4.1: Simulation 1: CNN architecture

• First layer: Convolutional.

1. Number of filters: 2, Kernel size: 3× 3, stride: 1.
2. Padding: same (zero-padding)
3. activation: ReLu
4. Kernel Initializer: HeUniform. (Remember, p-values are calibrated).

• Second layer: Max pooling

1. Pool size: 2× 2, stride: 2× 2, padding: same (Reduction to the dimensions to the half)

• Hidden layers: Fully conneted layers:

1. Third layer: Fully connected: 500 neurons, activation: ReLu, kernel initializer: HeUniform
2. Fourth layer: Fully connected: 250 neurons, activation: ReLu, kernel initializer: HeUniform
3. Fifth layer: Dropout: 0.5 probability
4. Sixth layer: Putput layer: 100 neurons, activation: sigmoid

• Loss function: binary crossentropy

• Optimizer: Nadam() (Default settings, high convergence speed and quality)

• Metric: AUPRC
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The End
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