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MHT: Introduction

® Testing focused on large-scale data.
® Set of m > 1 features. We study each hypothesis test individually.

e Sample units (N): Number of units where the measurements are collected.
® Partition of the m hypotheses into two sets:

® Hy is true: mg.

® fHy is false: my = m — mq (interesting).

® po = T2 proportion true null hypothesis. Assumption: pg > 0.9

e Evidence (against Hp) statistical test: p-value.
® (Calibrated p-values: Theoretical sampling null distribution is uniform.

® Focus: Difference between two independent groups. t-test.
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MHT: Outcomes when testing m hypothesis

Declared non-significant | Declared significant Total
Ho True U=myg—V 74 mg
Hy False T=m-S5 S my=m-—mg
m—R R m

Table: 1. Outcomes of testing m hypothesis under a specified significance level a.. (Benjamini and Hochberg,
1995)

® R = R,: Total number of hypothesis rejected.
e V: Total type-l errors. (FP, False Discovery)
® S: Total TP (True discoveries)

® |n practice: m is known, R is an observable RV and V/, S are unobservable RVs.
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MHT: Classical Procedures

Example: Application of the previous
procedures with six ordered p-values.
Classical Procedures (CP) Runt =4, Reonr = 0; Rpn =2
® CP define and control a specific error rate. H
¢ Uncorrected Hypothesis Testing (FPR)
Rejection (RynT): pi < .
® Family Wise Error Rate (FWER)
Procedure: Bonferroni correction
Rejection (Rponf): pi < .
® False Discovery Rate (FDR).

. . T ®
Procedure: Benjamini-Hochberg (BH) a/m o/ :
Rejection (ReH): p(iy < - —
reject don’t reject
Threshold
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MHT: Problems

® Dependency of the p-value: Even a tiny cut-off for the p-value can generate many false
positives with a high probability.
® Real interest: P(Hp|Data).

® | ow power: Correction procedures reduce the false positive rate but increase the false
negatives considerably.

® Null distribution should be known: Classical procedures depend profoundly on the
knowledge of the null distribution.
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MHT: Alternatives

Collecting evidence
® Based on [Selke et al, 2001].

® Use calibrated p-values for defining a
lower bound Bayes Factor.

® |nterpretation: Odds of Hy to H;

Limitations of classical MHT procedures
® Based on [Mary and Roaquin, 2021].

® Proposal: Semi-supervised approach. User
does not known null distribution, but has
at hand a sample drawn from the null

distribution.
LBBF(p) — {—eplog(p) if p< .e_1 ® Where the user can obtain this null train
1 otherwise. sample?
® Previous experiments, expert criteria, part
® Example: LBBF(p = 0.05) = 0.407, of the data under test, simulations,
ie Hp : 1 to Hy : 2.5. Not strong sampling process.

evidence against Hp!
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MHT: Proposal: P-value representation

P-value representation

® Set of ordered LBBFs: B™ 7
{biy = LBBF(p(;)) | Vi =1,...,m}. (i)()

® Normalized quotient:
7 _ by

bmax :

e Quotient of the ordered LBBFs: e Matrix of relative evidence among

Map: WV : B™ — Mmmxm test:

For each feba(nlture i=1, = m: 12(1)(1) 12(1)(2) 1_3(1)(m)

V(b)) = 5, = buiyi) W =1,.,m. 5_ |20 ba@ - beym
* Scale 0-1 bm)y bmy@) - bmym)

bmax = max{by;)(j)}

fori,j=1,...,m. ® Input of the supervised algorithm.
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MHT: Proposal: Simulation

Supervised Approach

Multi-label Classification.
Heavy imbalanced data.

Performance Metric: Area Under
Precision-Recall curve (AUPRC)
Aggregation: Micro-averaging.
How to solve the problem? CNNs.

1. Translation invariance and locality.

2. Curse of dimensionality.

Example: Matrix representation and response
of two independent MHT problems with

m = 100 features.

Representation of two simulations and their response (Female mice diet)

g X1 (Effect size of 3 grams)

I E] EIE]
g Xa (Effect size of 5 grams)

N

o =009 true null hypothesis

0 @ @ E)

o =0.95 true null hypothesis

D @ @ E)

100

100
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CNNs: Deep Learning

Deep (and breadth)

Number of hidden layers and number of
neurons.

Basic architecture: Fully connected
neurons

Simple Neural Network Deep Learning Neural Network

@nput Layer @ Hidden Layer  @® Output Layer

Increase the features ~ increase the
complexity of the model

Learning Adjusting the weights via
back(for)ward propagation algorithm.

Input Data is X
Weights are here

Data Transformation Layer

Weights are here Data Transformation Layer

Prediction of Target Variable Y ‘True Values of Target Variable

Loss Score

Optimizer
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CNNSs: Architecture

Convolutional Layer

e Spatial convolution over images. .
P & Pooling Layer

® Parameters:

® Downsampling pr: re.
1. kernel_size ownsampling procedure

® Parameters:

2. strides
3. padding 1. pool_size
4, filters strides

2.
3. padding
4. Type of aggregation: max, mean.

il Single depth slice

74 1M2x112064
pool Jlal1]z2]4
max pool with 2¢2 fers
and stride 2 68
1 3|4

7|8
| 1]0
3|4

12

224 y

-l
SRS

11/30



Simulation 1: Female mice diet

Value Body weight of female mice control population

Population (Individuals) 225 2
Mean 23.89 (g) 010 / \
Standard deviation 0.22 (g) o o perentle
Minimum 15.51 (g) i .
Maximum 38.84 (g)

Table: 2. Statistical summary female mice body 002

weight.

0

Body weight (Grams)
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Simulation 1: Female mice diet m = 100.

® Number of features: m = 100,

* Sample units: N = 12, ANN and CNN architectures

e Effect size: 96 distinct values, from
0.5 to 10.0 g, with a difference of 0.1 AN arehiecure (b e archiecnre

Hodel: "sequential

Gutput Shape

grams.

, 10800) °

) Secese0

® Proportion true Hp, 10 distinct
values, from 0.9 to 0.99 (Difference
of 0.1 pp)

® MHT problem:

L 230) 15250

2508500

S 258) g

(None, 100) 5160 FrFe

B

25100

® Hy;: Diet i does not affect weight.
® H;;: Diet i is effective.
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Simulation 1: Split train and test

e Total MHT scenarios: 960 (70% train, 10% validation, 20% test).
® Total features: 960 - 100 = 96 000.

® True Hy: 91104 diets (72876 training and 18 228 testing)
® True Hy: 4896 diets (3924 training and 972 testing)

Distribution relevant values in train and test set

Mull and Alternative hypothesis Histagram of effect size Praportion where null Hypothesis is true
- train
&0
70000 e &
60000 m
60
50000 &
z 2 ok
§ 20000 H 13
i H i
g g0 ge
‘= 30000 = =
30
20000 » »
10000 0
0 0 0
HO 2 H 3 8 1 090 091 092 093 0.94 0.95 0.96 0.97 0.98 099
Hypothesis Effect size (ES) Proportion HO
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Simulation 1: Performance in test set

® Total features test set: 19 200 (Hp:18 228, H;:972 )
e AUPRC of CNN (and ANN) 0.9. (Both train and test)

® DL: Precision and recall greater than 80% simultaneously in test set.

Comparison traditional procedures and Deep Learning approaches

Total Rejections ROC Curve Precision-Recall Curve
20000
— Uncorrected 10 10
17500 Bonferroni
— BH
— N
15000 NN 08 08
E
_ 12500 E —— AUPRC-UHT =078
E:, 206 06 AUPRC-Bonf = 0.67
£ 10000 £ 3 —— AUPRC-BH =0.77
k| 2 g —— AUPRC-ANN = 0.90
5 2 & —— AUPRC-CNN = 0.90
g 7500 8
= Frad 04 Baseline = 0.05
H —— AUROC-UHT = 0.94
5000 AUROCBonf = 0.01
—— AUROCBH = 0.85
2500 0z —— AUROCANN =099 02
—— AUROC-CNN =099
0 baseline
00 00
00 02 04 06 08 10 0o 02 04 06 08 10 0o 02 04 06 08 10
Significant values False positive rate (FPR) Recall
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Simulation 2: Normal population

° X ~ /\/'(,u,-,aiz), for i =1, ..., m independent populations and unknown variance a,-2.
® MHT problem: {Hp; : u1; = 0 versus y1; # 0Vo? > 0},i =1,...m
® Simulation parameters:
1. Total simulations: B = 100
N = 20,
m = 50,100 and 150,
po = 0.9,0.95 and 0.99,
wi = pa where pa =0.5,1 and 2. and a,-2 =1
Benchmark: BH procedure.

Sk~ wN
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Simulation 2: Normal Population

Proportion true null hypothesis: po =0.9

Precision-Recall Curve (Normal populations)

e

m=150

R}

T o5 o8
Recall
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Conclusions

® CNNs offers a competitive alternative of detecting significant features in the context of
MHT problems.

® Simulation case 1 (female mice diet) gives satisfactory results for detecting a higher

number of cases where the alternative hypothesis is true.

® Simulation 2, shows that we can not potentially generalize a predefined architecture to
another datasets or different number of features.

® Future analysis:

1. Not calibrated p-values: Empirical null distribution of the p-values estimated directly from
the data
2. Curse of dimensionality: Explore sparse representation
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Appendix 1.1: Hypothesis Testing

® Reliability: Main factors:

1. Significance level: It is the standard
of proof that the phenomenon exists
or the risk of mistakenly rejecting
the null hypothesis. Implies directly
the critical region of rejection.

2. Power: Probability of rejecting the
null when the null is false

3. Effect size: Degree to which the
phenomenon is present in the
population.

4. Sample size: Number of observed
samples from the population.

Power of t-test: Female mice diet
Significance level = 0.05 Significance level = 0.01

35 51 1515212 2730 3 3 39 42 45 4 51 IR ER EEEEE LR Y
umber of observations. Numbs ervations.




Appendix 1.1: P-values

® Distance between the data and the model prediction is measured using a test statistic.

® P-value is the probability that the chosen test statistic (t-test) would have been at least
as large as its observed value if every model assumption were correct.

® p-values are no longer useful quantity to interpret when dealing with high-dimensional
data (Many FP with high probability, increasing the features increases the error just by
chance)

® Most common MHT methods are based on the evidence provided by test statistics and
their corresponding p-values.

® Other ways of collecting evidence? Bayes Factors (BFs).
® BF: likelihood ratio of the alternative against the null hypothesis.

® However, fully defined and interpretable BFs require heavy computational techniques for
being adjusted.

® Goal: Interpret the calibrated p-values as lower bounds on Bayes Factors.
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Appendix 1.1: Calibration of p-values: LBBF

® Under appropriate test statistic T, larger values would be evidence in favor of Hj.
® Density of p under H; should be decreasing in p.

e Consider alternative distributions for the p-values. Selke et al. procedure:

Ho : p ~ Uniform(0, 1) versus H; : p ~ Beta(¢,1) = £p*~t
e Why Beta(&,1)? Beta is easy to work! With £ = 1, we have Hp.

® Remember: posterior odds = prior odds x Bayes Factor.

® BF (or odds) of Hp to H; for a given prior density (&) is:

. p
Jy €psim(€) de

= —eplog(p) for p < e~ L.

BF(p) = Bx(p)

* LBBF(p) = inf Bx(p) = gpcboer
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Appendix 2.1: Simulation 1: Performance for effect size

Effect size depends on the unit of measurement (grams).

Universal effect size index: Conhen'sd. d = M

¢ Small (d =0.2), medium (d = 0.5), large d = 0.8.

Based on B = 2000 simulations, we compute the median ES index for the difference in
weight ranging from 0.5 to 10 grams.

Precision-Recall curve for Effect size

Small (Difference grams: From 0.5 to 2) Medium (Difference grams: From 2 to 3) Large (Difference grams: From 3 to 10)
10 —— AUPRC-UHT = 0.08 104 —— AUPRC.UHT =032 10
AUPRC-Bonf = 0.00 AUPRC-Bonf = 0.06
—— AUPRC:BH = 0.07 —— AUPRCBH =034
—— AUPRC.CHN = 0.25 —— AUPRC-CNN = 0.66
ve Baseline = 0.05 o8 Baseline = 0.05 oe
—— AUPRC-UHT = 0.92
506 508 506 AUPRC-Bonf = 0 85
2 8 2 —— AUPRCBH = 0.92
£ 2 £ —— AUPRCCNN = 0.87
04 04 04 Baseline = 0.05
02 02 02
00 00 00
00 02 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
Recall Recall Recall
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Appendix 2.2: Simulation 1: Order LBBF

® Primary assumption CNN: Compositional data (translation invariance and feature locality)

® |n case that we assign randomly position of the LBBF, there is a considerable reduction of
the performance in the test set. Overfitting!

Comparison traditional procedures and Deep Learning approaches (LBBF not sorted)

Total Rejections ROC Curve Precision-Recall Curve
20000
— Uncorrected 10 10
17500 Bonferroni
15000 " LE] 08
3
_ 12500 E —— AUPRC-HTU = 0.78
£ Y o6 c 06 AUPRC-Bonf = 0.67
£ 10000 © 2 —— AUPRC-BH =0.77
£ 2 2 «=++ AUPRC-ANN = 038
i i a -+ AUPRC-CNM = 0.42
g 7500 g
“ g 04 Baseline = 0.05
2 —— AUROCHTU = 0.94
5000 . AUROC-Bonf = 0.01
e —— AUROCBH = 0.85
2500 0z / 02

=+ AUROC-ANN =075
-+ RUROC-CNN =0.78
baseline

00 02 04 06 08 10 00 02 04 0§ 08 10 00 02 04 06 08 10
Significant values False positive rate (FPR) Recall
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Appendix 2.3: Simulation 1: Interaction LBBF and Sparse

models

AUPRC-CNN test set using the complete representation: 0.9

If we consider only the scaled LBBF, we have AUPRC-CNN = 0.26

LBBF interaction is crucial in the performance of the models. AUPRC-CNN = 0.89
If we consider only the upper part matrix of the representation, AUPRC-CNN = 0.82.

Precision-Recall Curve: Element analysis
Scaled Lower Bound Bayes Factors Interactions Interactions: Upper triangular

10 —— AUPRCCNN = 0.255 10
Baseline = 0.051
® Fsore

£ £ 061 —— AUPRC-CHN = 0.896 S 06 {/—— AUPRC-CNN = 0.821
Z 2 Baseline = 0.051 Z Baseline = 0.051
£ 2 ® Fscore £ e Fscore

04 04 04

02 02 02

0o

00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
Recall Recall Recall
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Appendix 3.1: Simulation 3: Curse of dimensionality

(a) ANN architecture (b) CNN architecture

Model: “sequential”

Layer (type) Output Shape Peran #

e ANN and CNN e seoee : T T e
dense (Dense) (None, 380) 388600300 - - = -
architectures for m = dorse e : -
1000 features e —
e ANN: 1500 neurons,
300 million parameters —
e CNN: Adding several
convolutional /max-
pooling layers reduces
the total parameters
around 3 million. ;
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Appendix 3.2: Simulation 3: Female mice with m = 1000

features

e N =12, ES ranging from 2 to 15 grams, (0.1 grams distance) and py = 0.9, 0.95 and
0.99.

® Total simulations: 390 (281 for training)
® Figure below is used only for a single prediction. Still, we have a competitive model.

Performance CNN vs Traditional methods (Female mice diet)

Total Rejections ROC Curve Precision-Recall Curve
1000 { — Uncorrected 10 10 —— AUPRC-UHT = 0.57
Bonferroni AUPRC-Bonf = 0.09
— BH —— AUPRC:BH = 0.57
gop | — N —— AUPRC-CHM = 0.61
o8 oe Baseline = 0.10
=
_ £
e 206 £ 06
o 1 5
g o &
2 s g
g g g
2 z a
g w0 2 0a 04
o
5
— AUROC-UHT = 0.67
200 AUROC-Bonf = 0.00
oz —— AUROCABH = 0.86 02
—— AUROC-CNN =0.91
o baseline
0o L% 0o
00 02 04 06 08 10 00 02 04 06 [Y] 10 00 02 04 06 08 10
Significant values False positive rate (FPR) Recall
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Appendix 4.1: Simulation 1: CNN architecture

® First layer: Convolutional.
1. Number of filters: 2, Kernel size: 3 x 3, stride: 1.
2. Padding: same (zero-padding)
3. activation: ReLu
4. Kernel Initializer: HeUniform. (Remember, p-values are calibrated).

Second layer: Max pooling
1. Pool size: 2 x 2, stride: 2 x 2, padding: same (Reduction to the dimensions to the half)

Hidden layers: Fully conneted layers:
1. Third layer: Fully connected: 500 neurons, activation: ReLu, kernel initializer: HeUniform
2. Fourth layer: Fully connected: 250 neurons, activation: RelLu, kernel initializer: HeUniform
3. Fifth layer: Dropout: 0.5 probability
4. Sixth layer: Putput layer: 100 neurons, activation: sigmoid

Loss function: binary_crossentropy
e Optimizer: Nadam() (Default settings, high convergence speed and quality)
Metric: AUPRC
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The End
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