Application of CNNs in MHT problems

Conejo Villalobos César

Department of Statistics Universidad Carlos III de Madrid

September 21, 2021

Overview

- 1. Multiple Hypothesis testing (MHT)
- 2. Convolutional Neural Networks (CNNs)
- 3. Example 1: Female mice diet
- 4. Example 2: Normal population
- 5. Conclusions
- 6. Appendix

MHT: Introduction

- Testing focused on large-scale data.
- Set of m > 1 features. We study each hypothesis test individually.
- Sample units (N): Number of units where the measurements are collected.
- Partition of the *m* hypotheses into two sets:
 - H_0 is true: m_0 .
 - H_0 is false: $m_1 = m m_0$ (interesting).
 - $p_0 = \frac{m_0}{m}$: proportion true null hypothesis. Assumption: $p_0 \ge 0.9$
- Evidence (against H_0) statistical test: p-value.
- Calibrated p-values: Theoretical sampling null distribution is uniform.
- Focus: Difference between two independent groups. *t*-test.

MHT: Outcomes when testing *m* hypothesis

	Declared non-significant	Declared significant	Total
H ₀ True	$U = m_0 - V$	V	m_0
H₀ False	$T=m_1-S$	S	$m_1=m-m_0$
	m-R	R	m

Table: 1. Outcomes of testing m hypothesis under a specified significance level α . (Benjamini and Hochberg, 1995)

- $R = R_{\alpha}$: Total number of hypothesis rejected.
- *V*: Total type-I errors. (FP, False Discovery)
- *S*: Total TP (True discoveries)
- In practice: m is known, R is an observable RV and V, S are unobservable RVs.

MHT: Classical Procedures

Classical Procedures (CP)

- CP define and control a specific error rate.
- Uncorrected Hypothesis Testing (FPR)
 Rejection (R_{UHT}): p_i < α.
- Family Wise Error Rate (FWER) Procedure: Bonferroni correction Rejection (R_{Bonf}): $p_i < \frac{\alpha}{m}$.
- False Discovery Rate (FDR). Procedure: Benjamini-Hochberg (BH) Rejection (R_{BH}): $p_{(i)} < \frac{i\alpha}{m}$.

Example: Application of the previous procedures with six ordered p-values.

$$R_{UHT} = 4$$
; $R_{Bonf} = 0$; $R_{BH} = 2$

MHT: Problems

- Dependency of the p-value: Even a tiny cut-off for the p-value can generate many false positives with a high probability.
- Real interest: $\mathcal{P}(H_0|\mathsf{Data})$.
- Low power: Correction procedures reduce the false positive rate but increase the false negatives considerably.
- Null distribution should be known: Classical procedures depend profoundly on the knowledge of the null distribution.

MHT: Alternatives

Collecting evidence

- Based on [Selke et al, 2001].
- Use calibrated p-values for defining a lower bound Bayes Factor.
- Interpretation: Odds of H_0 to H_1

$$LBBF(p) = egin{cases} -ep\log(p) & & ext{if } p \leq e^{-1} \\ 1 & & ext{otherwise}. \end{cases}$$

• Example: LBBF(p = 0.05) = 0.407, ie $H_0: 1$ to $H_1: 2.5$. Not strong evidence against $H_0!$

Limitations of classical MHT procedures

- Based on [Mary and Roaquin, 2021].
- Proposal: Semi-supervised approach. User does not known null distribution, but has at hand a sample drawn from the null distribution.
- Where the user can obtain this null train sample?
- Previous experiments, expert criteria, part of the data under test, simulations, sampling process.

MHT: Proposal: P-value representation

P-value representation

- Set of ordered LBBFs: \mathcal{B}^m $\{b_{(i)} = LBBF(p_{(i)}) \mid \forall i = 1, ..., m\}.$
- Quotient of the ordered LBBFs: Map: $\Psi: \mathcal{B}^m \to \mathcal{M}^{m \times m}$ For each feature i = 1, ..., m: $\Psi(b_{(i)}) = \frac{b_{(i)}}{b_{(i)}} = b_{(i)(j)} \ \forall j = 1, ..., m$.
- Scale 0-1 $b_{max} = max\{b_{(i)(j)}\}$ for i, j = 1, ..., m.

Normalized quotient:

$$\bar{b}_{(i)(j)} = \frac{b_{(i)(j)}}{b_{\max}}$$
.

Matrix of relative evidence among test:

$$\bar{B} = \begin{bmatrix} \bar{b}_{(1)(1)} & \bar{b}_{(1)(2)} & \dots & \bar{b}_{(1)(m)} \\ \bar{b}_{(2)(1)} & \bar{b}_{(2)(2)} & \dots & \bar{b}_{(2)(m)} \\ \vdots & \vdots & \ddots & \vdots \\ \bar{b}_{(m)(1)} & \bar{b}_{(m)(2)} & \dots & \bar{b}_{(m)(m)} \end{bmatrix}$$

• Input of the supervised algorithm.

MHT: Proposal: Simulation

Supervised Approach

- Multi-label Classification.
- Heavy imbalanced data.
- Performance Metric: Area Under Precision-Recall curve (AUPRC)
- Aggregation: Micro-averaging.
- How to solve the problem? CNNs.
 - 1. Translation invariance and locality.
 - 2. Curse of dimensionality.

Example: Matrix representation and response of two independent MHT problems with m = 100 features.

CNNs: Deep Learning

Deep (and breadth)

Number of hidden layers and number of neurons.

Basic architecture: Fully connected neurons

Increase the features \sim increase the complexity of the model

Learning Adjusting the weights via back(for)ward propagation algorithm.

CNNs: Architecture

Convolutional Layer

- Spatial convolution over images.
- Parameters:
 - 1. kernel_size
 - 2. strides
 - 3. padding
 - 4. filters

Pooling Layer

- Downsampling procedure.
- Parameters:
 - 1. pool_size
 - 2. strides
 - 3. padding
 - 4. Type of aggregation: max, mean.

Simulation 1: Female mice diet

	Value
Population (Individuals)	225
Mean	23.89 (g)
Standard deviation	0.22 (g)
Minimum	15.51 (g)
Maximum	38.84 (g)

Table: 2. Statistical summary female mice body weight.

Simulation 1: Female mice diet m = 100.

- Number of features: m = 100,
- Sample units: N = 12,
- Effect size: 96 distinct values, from 0.5 to 10.0 g, with a difference of 0.1 grams.
- Proportion true H₀, 10 distinct values, from 0.9 to 0.99 (Difference of 0.1 pp)
- MHT problem:
 - H_{0i} : Diet *i* does not affect weight.
 - H_{1i} : Diet i is effective.

ANN and CNN architectures

flatten (Flatten)	(None,	10000)	0
flatten (Flatten)	None,	10000)	
			0
dense (Dense)	(None,	500)	5000500
dense_1 (Dense)	(None,	250)	125250
dropout (Dropout)	(None,	250)	0
dense 2 (Dense)	(None,	100)	25100

(n) ANN avabitactura

Layer (type)	Output	Shape	Paran #
conv2d (Conv2D)	(None,	100, 100, 2)	20
max_pooling2d (MaxPooling2D)	(None,	50, 50, 2)	0
flatten (Flatten)	(None,	5000)	0
dense (Dense)	(None,	500)	2500500
dense_1 (Dense)	(None,	250)	125250
dropout (Dropout)	(None,	250)	0
dense_2 (Dense)	(None,	180)	25188

Non-toninable names: 0

Simulation 1: Split train and test

- Total MHT scenarios: 960 (70% train, 10% validation, 20% test).
- Total features: $960 \cdot 100 = 96\,000$.
 - True H₀: 91 104 diets (72 876 training and 18 228 testing)
 - True H₁: 4896 diets (3924 training and 972 testing)

Simulation 1: Performance in test set

- Total features test set: 19 200 (H_0 :18 228, H_1 :972)
- AUPRC of CNN (and ANN) 0.9. (Both train and test)
- DL: Precision and recall greater than 80% simultaneously in test set.

Simulation 2: Normal population

- $X_i \sim \mathcal{N}(\mu_i, \sigma_i^2)$, for i = 1, ..., m independent populations and unknown variance σ_i^2 .
- MHT problem: $\{H_{0i}: \mu_i = 0 \text{ versus } \mu_i \neq 0 \ \forall \sigma_i^2 > 0\}, i = 1, ..., m$
- Simulation parameters:
 - 1. Total simulations: B = 100
 - 2. N = 20,
 - 3. m = 50,100 and 150,
 - 4. $p_0 = 0.9, 0.95$ and 0.99,
 - 5. $\mu_i = \mu_A$ where $\mu_A = 0.5, 1$ and 2. and $\sigma_i^2 = 1$
 - 6. Benchmark: BH procedure.

Simulation 2: Normal Population

Precision-Recall Curve (Normal populations)

Conclusions

- CNNs offers a competitive alternative of detecting significant features in the context of MHT problems.
- Simulation case 1 (female mice diet) gives satisfactory results for detecting a higher number of cases where the alternative hypothesis is true.
- Simulation 2, shows that we can not potentially generalize a predefined architecture to another datasets or different number of features.
- Future analysis:
 - 1. Not calibrated p-values: Empirical null distribution of the p-values estimated directly from the data
 - 2. Curse of dimensionality: Explore sparse representation

Q & A

Appendix 1.1: Hypothesis Testing

- Reliability: Main factors:
 - Significance level: It is the standard of proof that the phenomenon exists or the risk of mistakenly rejecting the null hypothesis. Implies directly the critical region of rejection.
 - 2. Power: Probability of rejecting the null when the null is false
 - 3. Effect size: Degree to which the phenomenon is present in the population.
 - 4. Sample size: Number of observed samples from the population.

Appendix 1.1: P-values

- Distance between the data and the model prediction is measured using a test statistic.
- P-value is the probability that the chosen test statistic (t-test) would have been at least as large as its observed value if every model assumption were correct.
- p-values are no longer useful quantity to interpret when dealing with high-dimensional data (Many FP with high probability, increasing the features increases the error just by chance)
- Most common MHT methods are based on the evidence provided by test statistics and their corresponding p-values.
- Other ways of collecting evidence? Bayes Factors (BFs).
- BF: likelihood ratio of the alternative against the null hypothesis.
- However, fully defined and interpretable BFs require heavy computational techniques for being adjusted.
- Goal: Interpret the calibrated p-values as lower bounds on Bayes Factors.

Appendix 1.1: Calibration of p-values: LBBF

- Under appropriate test statistic T, larger values would be evidence in favor of H_1 .
- Density of p under H_1 should be decreasing in p.
- Consider alternative distributions for the p-values. Selke et al. procedure:

$$H_0: p \sim \mathsf{Uniform}(0,1) \text{ versus } H_1: p \sim \mathsf{Beta}(\xi,1) = \xi p^{\xi-1}$$

- Why Beta $(\xi,1)$? Beta is easy to work! With $\xi=1$, we have H_0 .
- Remember: posterior odds = prior odds \times Bayes Factor.
- BF (or odds) of H_0 to H_1 for a given prior density $\pi(\xi)$ is:

$$\mathsf{BF}(p) = B_{\pi}(p) = rac{p}{\int_0^1 \xi p^{\xi-1} \pi(\xi) \ d\xi}$$

• LBBF $(p) = \inf B_{\pi}(p) = \frac{p}{\sup_{\xi \in p^{\xi-1}} = -eplog(p)}$ for $p < e^{-1}$.

Appendix 2.1: Simulation 1: Performance for effect size

- Effect size depends on the unit of measurement (grams).
- Universal effect size index: Conhen's d. $d = \frac{|m_A m_B|}{s}$.
- Small (d = 0.2), medium (d = 0.5), large d = 0.8.
- Based on B = 2000 simulations, we compute the median ES index for the difference in weight ranging from 0.5 to 10 grams.

Appendix 2.2: Simulation 1: Order LBBF

- Primary assumption CNN: Compositional data (translation invariance and feature locality)
- In case that we assign randomly position of the LBBF, there is a considerable reduction of the performance in the test set. Overfitting!

Appendix 2.3: Simulation 1: Interaction LBBF and Sparse models

- AUPRC-CNN test set using the complete representation: 0.9
- If we consider only the scaled LBBF, we have AUPRC-CNN = 0.26
- LBBF interaction is crucial in the performance of the models. AUPRC-CNN = 0.89
- If we consider only the upper part matrix of the representation, AUPRC-CNN = 0.82.

Appendix 3.1: Simulation 3: Curse of dimensionality

- ANN and CNN architectures for m = 1000 features
- ANN: 1500 neurons, 300 million parameters
- CNN: Adding several convolutional/maxpooling layers reduces the total parameters around 3 million.

(a) ANN architecture

Layer (type)	Output	Shape	Param #
flatten (Flatten)	(None,	1000000)	0
dense (Dense)	(None,	300)	366669366
dense_1 (Dense)	(None,	250)	75250
dropout (Dropout)	(None,	250)	θ
dense_2 (Dense)	(None,	1000)	251000
Total params: 300,326,5	50		
Trainable params: 300,3	26,550		
Non-trainable params: 0			

(b) CNN architecture

Layer (type)	Output	Shape	Param #
conv2d (Conv2D)	(None,	1000, 1000, 2)	20
max_pooling2d (MaxPooling2D)	(None,	500, 500, 2)	0
conv2d_1 (Conv2D)	(None,	500, 500, 4)	76
max_pooling2d_1 (MaxPooling2	(None,	250, 250, 4)	0
conv2d_2 (Conv2D)	(None,	250, 250, 8)	296
max_pooling2d_2 (MaxPooling2	(None,	125, 125, 8)	0
conv2d_3 (Conv2D)	(None,	125, 125, 16)	1168
max_pooling2d_3 (MaxPooling2	(None,	63, 63, 16)	0
conv2d_4 (Conv2D)	(None,	63, 63, 32)	4640
conv2d_5 (Conv2D)	(None,	63, 63, 32)	9248
max_pooling2d_4 (MaxPooling2	(None,	32, 32, 32)	0
conv2d_6 (Conv2D)	(None,	32, 32, 32)	9248
max_pooling2d_5 (MaxPooling2	(None,	16, 16, 32)	0
flatten (Flatten)	(None,	8192)	0
dense (Dense)	(None,	300)	2457900
dense_1 (Dense)	(None,	250)	75250
dropout (Dropout)	(None,	250)	0
dense_2 (Dense)	(None,	1000)	251000

Trainable params: 2,808,84 Non-trainable params: 0

Appendix 3.2: Simulation 3: Female mice with m=1000 features

- N = 12, ES ranging from 2 to 15 grams, (0.1 grams distance) and $p_0 = 0.9$, 0.95 and 0.99.
- Total simulations: 390 (281 for training)
- Figure below is used only for a single prediction. Still, we have a competitive model.

Appendix 4.1: Simulation 1: CNN architecture

- First layer: Convolutional.
 - 1. Number of filters: 2, Kernel size: 3×3 , stride: 1.
 - 2. Padding: same (zero-padding)
 - 3. activation: ReLu
 - 4. Kernel Initializer: **HeUniform**. (Remember, p-values are calibrated).
- Second layer: Max pooling
 - 1. Pool size: 2×2 , stride: 2×2 , padding: **same** (Reduction to the dimensions to the half)
- Hidden layers: Fully conneted layers:
 - 1. Third layer: Fully connected: 500 neurons, activation: ReLu, kernel initializer: HeUniform
 - 2. Fourth layer: Fully connected: 250 neurons, activation: ReLu, kernel initializer: HeUniform
 - 3. Fifth layer: Dropout: 0.5 probability
 - 4. Sixth layer: Putput layer: 100 neurons, activation: sigmoid
- Loss function: binary_crossentropy
- Optimizer: Nadam() (Default settings, high convergence speed and quality)
- Metric: AUPRC

References

David Mary and Etienne Roaquin (2021) Semi-supervised Multiple Testing *arXiv*2106.13501.

Selke, T., Bayarri, M., and Berger, J.O. (2001) Calibration of p values for testing precise null hypothessis The American Statistician 55(1), 62-71.

The End