
Unsupervised Algorithms in machine learning ∗

Cesar Conejo Villalobos Data Scientist

This document provides some examples of unsupervised algorithms in machine learning. In these
techniques, we need to infer the properties of the observations without the help of an output
variable or supervisor. We review two methods: k-means and hierarchical clustering. Then we use
some data from Kaggle for applying these techniques to produce a customer segmentation. The
platform that we use is R. Because of the number of observations, we are going to use a parallel
process for improving the execution times.

Keywords: Unsupervised, algorithms, k-means, hierarchical classification, kaggle, R, parallel

Introduction

In the book The Elements of Statistical Learning Hastie T. (2008) explains that in the case of unsuper-
vised learning, data usually has a set of N observations (x1, ..., xN) of a random vector X having
joint density Pr(X). The goal is to infer the properties of this probability density.

The techniques that statistics and machine learning offer us for unsupervised learning are the
following:

1) Principal components, multidimensional scaling.
2) Cluster analysis.
3) Mixture modeling.
4) Association rules.

In this exercise, we are going to focus on cluster analysis. The basis of our model will be the
Kaggle Credit Card dataset for Clustering. The data are an 8950 x 18 matrix. One variable is
categorical and represents the customer ID, the next seventeen are real numbers each representing
the behavior of credit cardholders. The goal is to define a marketing strategy based on customer
segmentation.

The first aspect we need to solve is to find the number of clusters that we need. Hastie T. (2008)
says that we can have two scenarios:

1) For data segmentation, the number of clusters is defined as part of the problem, and it is base
on the capacity and resources of the company. The goal is to find observations that belong
to each proposed group.

2) Determine how the observations belong to natural distinct groupings. In this case, the num-
ber of clusters is unknown.

For this exercise, we are going to use scenario 2 and trying to find the number of clusters and
the characteristics of each group using the following techniques:

1) k-means
2) Hierarchical clustering.
∗Template taken from (http://github.com/svmiller). Corresponding author: svmille@clemson.edu.

1

https://www.kaggle.com/arjunbhasin2013/ccdata
http://github.com/svmiller
mailto:svmille@clemson.edu

Techniques

As mentioned before, the goal of unsupervised algorithms is to get the classes as homogeneous as
possible and such that they are sufficiently separated. This goal can be specified numerically from
the following property:

Suppose that exist a partition P = (C1, ..., CK) of Ω, where g1, ..., gK are the cluster center of the
classes:

gk =
1
|Ck| ∑

i∈Ck

xi

Also g is the global center 1
N ∑N

i=1 xi. We also define:

• Total point scatter: T = 1
N ∑N

i=1 ||xi − g||2.

• Within-cluster point scatter: W(C) = 1
N ∑K

k=1 ∑i∈Ck
||xi − gk||2.

• Between-cluster point scatter: B(C) = ∑K
k=1

|Ck |
N ||gk − g||2

In this case, the algorithm requires B(C) to be maximum and W(C) to be minimum. Since the
total point scatter T is fixed, then maximizing B(C) automatically minimizes W(C). Therefore, the
two goals (homogeneity within classes and separation between classes) are achieved at the same
time by minimizing W(C).

Thus, the goal in the K-means method is to find a partition C of Ω. Also, we find some repre-
sentatives of the classes, such that W(C) is minimal. For determining how many clusters a dataset
has, we can use the elbow method.

Furthermore, k-means depend on the choice of the number of clusters. On the other hand,
hierarchical clustering methods do not expect such designations. Instead, Hastie T. (2008) claims
that this method demands the user to specify a measure of dissimilarity between (disjoint) groups
of observations, based on the pairwise dissimilarities among the observations.

This method of classification uses a notion of proximity between groups of elements to mea-
sure the separation between the classes sought. To do this, the concept of aggregation is intro-
duced, which is nothing more than a dissimilarity between groups of individuals: be A, B ⊆ Ω
then the aggregation between A and B is δ(A, B). Then we have the following agglomerative
clustering methods:

• Single linkage: δSL(A, B) = min{d(xi, dj)|xi ∈ A, xj ∈ B}

• Complete linkage: δCL(A, B) = max{d(xi, dj)|xi ∈ A, xj ∈ B}

• Average linkage: δAL(A, B) = 1
|A||B| ∑xi∈A,xj∈B d(xi, dj)

• Ward linkage: δWard(A, B) = |A||B|
|A|+|B| ||gA − gB||2

Analysis

We are going to define the marketing strategy using k-means and hierarchal clustering. But first,
we will see the distribution of the data.

2

Exploratory Analysis

We create the function cc_stats() for analyzing some of the characteristics of the dataset such as:

• Number of complete observations.

• Number of NA values.

• Mean of complete observations.

• Standard desviation of complete observations.

• Number of outliers observations. (Q3 + 1.5IQR)

• Minimun value of complete observations.

• Maximun value of complete observations.

• 95 quantile.

• Upper limit for the value. (mean + 3 sd)

Basic statistics
Input: x vector
Output: Summary of statistics of the input

cc_stats <- function(x){

#NA Values
nas = sum(is.na(x))

Vector with complete values
a = x[!is.na(x)]

Properties

m = mean(a)
min = min(a)
max = max(a)
s = sd(a)

Stats
stats <- boxplot.stats(a)
n <- stats$n
out <- length(stats$out)

Q95 = quantile(a, 0.95)
UL = m + 3*s

return(c(n = n,

3

nas = nas,
Mean = m,
StDev = s,
Q_out = out,
Min = min,
Max = max,
Q = Q95,
Upper_Limit = UL))

}

Using the function apply(), we see the statistical characteristics for each of the variables:

Vector with the name of variables
vars <- c("BALANCE",

"BALANCE_FREQUENCY",
"PURCHASES",
"ONEOFF_PURCHASES",
"INSTALLMENTS_PURCHASES",
"CASH_ADVANCE",
"PURCHASES_FREQUENCY",
"ONEOFF_PURCHASES_FREQUENCY",
"PURCHASES_INSTALLMENTS_FREQUENCY",
"CASH_ADVANCE_FREQUENCY",
"CASH_ADVANCE_TRX",
"PURCHASES_TRX",
"CREDIT_LIMIT",
"PAYMENTS",
"MINIMUM_PAYMENTS",
"PRC_FULL_PAYMENT",
"TENURE")

Apply the function for each variable
describe_stats <- t(data.frame(apply(cc_general[vars], 2, cc_stats)))
describe_stats

n nas Mean StDev Q_out Min Max
BALANCE 8950 0 1564.47 2081.53 695 0.000 19043.1
BALANCE_FREQUENCY 8950 0 0.88 0.24 1493 0.000 1.0
PURCHASES 8950 0 1003.20 2136.63 808 0.000 49039.6
ONEOFF_PURCHASES 8950 0 592.44 1659.89 1013 0.000 40761.2
INSTALLMENTS_PURCHASES 8950 0 411.07 904.34 867 0.000 22500.0
CASH_ADVANCE 8950 0 978.87 2097.16 1030 0.000 47137.2
PURCHASES_FREQUENCY 8950 0 0.49 0.40 0 0.000 1.0
ONEOFF_PURCHASES_FREQUENCY 8950 0 0.20 0.30 782 0.000 1.0
PURCHASES_INSTALLMENTS_FREQUENCY 8950 0 0.36 0.40 0 0.000 1.0
CASH_ADVANCE_FREQUENCY 8950 0 0.14 0.20 525 0.000 1.5
CASH_ADVANCE_TRX 8950 0 3.25 6.82 804 0.000 123.0
PURCHASES_TRX 8950 0 14.71 24.86 766 0.000 358.0

4

CREDIT_LIMIT 8949 1 4494.45 3638.82 248 50.000 30000.0
PAYMENTS 8950 0 1733.14 2895.06 808 0.000 50721.5
MINIMUM_PAYMENTS 8637 313 864.21 2372.45 841 0.019 76406.2
PRC_FULL_PAYMENT 8950 0 0.15 0.29 1474 0.000 1.0
TENURE 8950 0 11.52 1.34 1366 6.000 12.0
Q.95% Upper_Limit
BALANCE 5909.11 7809.07
BALANCE_FREQUENCY 1.00 1.59
PURCHASES 3998.62 7413.11
ONEOFF_PURCHASES 2671.09 5572.10
INSTALLMENTS_PURCHASES 1750.09 3124.08
CASH_ADVANCE 4647.17 7270.36
PURCHASES_FREQUENCY 1.00 1.69
ONEOFF_PURCHASES_FREQUENCY 1.00 1.10
PURCHASES_INSTALLMENTS_FREQUENCY 1.00 1.56
CASH_ADVANCE_FREQUENCY 0.58 0.74
CASH_ADVANCE_TRX 15.00 23.72
PURCHASES_TRX 57.00 89.28
CREDIT_LIMIT 12000.00 15410.90
PAYMENTS 6082.09 10418.34
MINIMUM_PAYMENTS 2766.56 7981.55
PRC_FULL_PAYMENT 1.00 1.03
TENURE 12.00 15.53

First of all, there is only a few values with NA. If we want to see if they both happen at the same
time, we can do:

sum(is.na(cc_general$CREDIT_LIMIT) & is.na(cc_general$MINIMUM_PAYMENTS))

[1] 0

As a result, the NA values do not occur in the same row. For fixing these unknown values, we
can follow three alternatives:

• Remove the cases.

• Fill in the unknowns using some strategy.

• Use tools that handle these types of values.

In this case, the unknown values only represent 3.51% of the data, so we decide to delete the
observations.

cc_general <- cc_general[-which(is.na(cc_general$CREDIT_LIMIT)
| is.na(cc_general$MINIMUM_PAYMENTS)),]

Another aspect we see is that the variables are measure in different scales. For example
BALANCE FREQUENCY, PURCHASES FREQUENCY, ONE OFF PURCHASES FREQUENCY and
PURCHASES INSTALLMENTS FREQUENCY are measure with a score between 0 and 1. Other
values are measure in money units and others in the number of transactions. Because there are
different units then we should scaling variables. We do that with the function normalize():

5

Normalize
Input: Numeric vector
Output: Vector normalized.

normalize <- function(x){

min_x <- min(x)
max_x <- max(x)

return((x - min_x)/(max_x - min_x))

}

Then, we apply the function to each variable:

cc_general_norm <- data.frame(apply(cc_general[vars], 2, normalize))

Finally, we apply cc_stats() again for seeing the changes in our data.

describe_stats_norm <- t(data.frame(apply(cc_general_norm[vars], 2, cc_stats)))
describe_stats_norm

n nas Mean StDev Q_out Min Max Q.95%
BALANCE 8636 0 0.084 0.110 666 0 1 0.312
BALANCE_FREQUENCY 8636 0 0.895 0.208 1511 0 1 1.000
PURCHASES 8636 0 0.021 0.044 767 0 1 0.083
ONEOFF_PURCHASES 8636 0 0.015 0.041 961 0 1 0.067
INSTALLMENTS_PURCHASES 8636 0 0.019 0.041 811 0 1 0.080
CASH_ADVANCE 8636 0 0.021 0.045 976 0 1 0.100
PURCHASES_FREQUENCY 8636 0 0.496 0.401 0 0 1 1.000
ONEOFF_PURCHASES_FREQUENCY 8636 0 0.206 0.300 749 0 1 1.000
PURCHASES_INSTALLMENTS_FREQUENCY 8636 0 0.369 0.398 0 0 1 1.000
CASH_ADVANCE_FREQUENCY 8636 0 0.092 0.135 346 0 1 0.389
CASH_ADVANCE_TRX 8636 0 0.027 0.056 794 0 1 0.122
PURCHASES_TRX 8636 0 0.042 0.070 716 0 1 0.165
CREDIT_LIMIT 8636 0 0.149 0.122 243 0 1 0.399
PAYMENTS 8636 0 0.035 0.057 785 0 1 0.121
MINIMUM_PAYMENTS 8636 0 0.011 0.031 841 0 1 0.036
PRC_FULL_PAYMENT 8636 0 0.159 0.296 1343 0 1 1.000
TENURE 8636 0 0.922 0.218 1290 0 1 1.000
Upper_Limit
BALANCE 0.41
BALANCE_FREQUENCY 1.52
PURCHASES 0.15
ONEOFF_PURCHASES 0.14
INSTALLMENTS_PURCHASES 0.14
CASH_ADVANCE 0.16

6

PURCHASES_FREQUENCY 1.70
ONEOFF_PURCHASES_FREQUENCY 1.11
PURCHASES_INSTALLMENTS_FREQUENCY 1.56
CASH_ADVANCE_FREQUENCY 0.50
CASH_ADVANCE_TRX 0.20
PURCHASES_TRX 0.25
CREDIT_LIMIT 0.52
PAYMENTS 0.21
MINIMUM_PAYMENTS 0.10
PRC_FULL_PAYMENT 1.05
TENURE 1.58

Now, all the variables are on a scale from 0 to 1. Also, there is no change in the variance of the
variables because we are only scaling and no standardizing. Finally, we save the new data set for
being used as the source in the parallel executions:

#Save table
write.table(x = cc_general_norm,

file = "output/data/cc_general_norm.csv",
sep = ",",
dec = ".")

K-means

For applying k-means, we develop the following code. We set the seed 1234 for reproducibility
purposes.

set.seed(1234)

First, we need to decide the number of clusters. We apply K-means clustering to the data using
the following techniques:

• Hartigan-Wong

• MacQueen

• Lloyd

• Forgy

Also, we use the snow library for performing parallelizable operations.

library(snow)

cl <- makeCluster(4, type="SOCK")
Read data in each cluster
ignore <- clusterEvalQ(cl,

{ data <- read.csv("output/data/cc_general_norm.csv",
header = TRUE,

7

sep = ",",
dec = "."

)
set.seed(1234)
NULL})

Hartigan-Wong
results_HW <- clusterApply(cl,

seq(1,20),
function(x) kmeans(data,

centers = x,
algorithm = "Hartigan-Wong",
nstart = 50))

withinss_HW <- sapply(results_HW, function(results_HW) results_HW$tot.withinss)

MacQueen
results_MQ <- clusterApply(cl,

seq(1,20),
function(x) kmeans(data,

centers = x,
algorithm = "MacQueen",
nstart = 50))

withinss_MQ <- sapply(results_MQ, function(results_MQ) results_MQ$tot.withinss)

Lloyd
results_Ll <- clusterApply(cl,

seq(1,20),
function(x) kmeans(data,

centers = x,
algorithm = "Lloyd",
nstart = 50))

withinss_Ll <- sapply(results_Ll, function(results_Ll) results_Ll$tot.withinss)

Forgy
results_FG <- clusterApply(cl,

seq(1,20),
function(x) kmeans(data,

centers = x,
algorithm = "Forgy",
nstart = 50))

withinss_FG <- sapply(results_FG, function(results_FG) results_FG$tot.withinss)

8

end paralell
stopCluster(cl)

Then, we can observe the total within-cluster sum of squares for K-means clustering for some
clusters from 1 to 20.

plot(withinss_HW,
col = "red",
type = "b",
xlab = "Number of cluster k",
ylab = "Sum of squares",
main = "Elbow Method: No. of clusters by algorithm")

points(withinss_MQ, col = "blue", type = "b")
points(withinss_Ll, col = "green", type = "b")
points(withinss_FG, col = "magenta", type = "b")
legend("topright",

legend = c("Hartigan","MacQueen","Lloyd","Forgy"),
col = c("red", "blue", "green", "magenta"),
lty = 1,
lwd = 1)

Figure 1: Total within-cluster sum of squares for K-means clustering

We can see that the kink occurs at k = 5, so this is the number of clusters that we propose for
the marketing strategy. Now, the question that we need to answer is which method for k-means
to use. Therefore, we code the following lines that show the results of the clustering in 5 groups.

9

Which method:
cl <- makeCluster(4, type="SOCK")
Read data in each cluster
ignore <- clusterEvalQ(cl,

{ data <- read.csv("output/data/cc_general_norm.csv",
header = TRUE,
sep = ",",
dec = "."

)
set.seed(1234)
NULL})

Evaluate all the posible algorithms
results_Algorithm <- clusterApply(cl,

c("Hartigan-Wong","MacQueen","Lloyd","Forgy"),
function(algorithm) kmeans(data,

centers = 5,
algorithm = algorithm,
nstart = 50))

for(i in 1:4) print(results_Algorithm[[i]]$betweenss)
end cluster
stopCluster(cl)

[1] 3496
[1] 3496
[1] 3490
[1] 3490

Because Hartigan-Wong reaches the greatest (Also MacQueen does) between-cluster point scat-
ter value, we choose that method. As a result, we code the method in the following way:

Cluster_HW <- kmeans(x = cc_general_norm,
centers = 5,
nstart = 250,
algorithm = "Hartigan-Wong")

Finally, we can see some properties of the cluster. For example, the number of observations by
the cluster is:

Cluster_HW$size

[1] 1169 823 3510 2106 1028

In this case, we can see that the classes are well balanced. Also, we can see the center of each
cluster and realize some interpretations.

10

palette <- c("orange4", "red2", "tomato", "darkseagreen1", "deeppink3", "steelblue2",
"gold1", "wheat", "tan4", "springgreen2", "darkred", "darkseagreen3",
"lightskyblue", "darkorange2", "plum3", "darkgoldenrod4", "skyblue1")

Graph
barplot(t(Cluster_HW$centers),

main = "Centers by cluster K-means clustering",
xlab = "Cluster",
beside = TRUE,
col = palette,
ylim = c(0, 1.9)
)

abline(h = 0.5, col = 3, lty = 3)
text(5, 0.55, labels= "Center > 0.5", col = "blue", adj = c(0, 0), font=2, cex= 0.8)
legend("topright",

legend = colnames(Cluster_HW$centers),
fill = palette, ncol = 2,
cex = 0.6)

1 2 3 4 5

Centers by cluster K−means clustering

Cluster

0.
0

0.
5

1.
0

1.
5

Center > 0.5

BALANCE
BALANCE_FREQUENCY
PURCHASES
ONEOFF_PURCHASES
INSTALLMENTS_PURCHASES
CASH_ADVANCE
PURCHASES_FREQUENCY
ONEOFF_PURCHASES_FREQUENCY
PURCHASES_INSTALLMENTS_FREQUENCY

CASH_ADVANCE_FREQUENCY
CASH_ADVANCE_TRX
PURCHASES_TRX
CREDIT_LIMIT
PAYMENTS
MINIMUM_PAYMENTS
PRC_FULL_PAYMENT
TENURE

In cluster 1, these customers have the highest value in ONEOFF_PURCHASES_FREQUENCY.
So, this group usually does the greatest purchase amount done in one-go.

Cluster 2 and 4 have the highest value in purchases_installments_frequency, so these cus-
tomers used frequently their credit cards. But cluster 2 has the highest value in PRC_FULL_-
PAYMENT, so this is a cluster of customers that used their card and also pay the products.

11

Cluster 3 has customers with less Purchase frequency, so this group does not make frequent
purchases with their credit cards. Finally, cluster 5 has customers with less balance, balance fre-
quency, and purchase installments frequency. This group is similar to group 3 because this is the
group of customers that do not use frequently their credit cards, so their balance is not frequently
updated.

In this way, we can segment the marketing strategy among these groups.

1) Customers with a high amount of purchases.
2) Customers that used their cards frequently.
3) Customers that no use their cards frequently.

Hierachical cluster

Using Ward aggregation, we code the method in the following way:

model_Ward <- hclust(dist(cc_general_norm), method = "ward.D2")

plot(model_Ward, labels = FALSE, xlab = "Hierachical cluster using Ward")
rect.hclust(model_Ward, k = 5, border = "blue")

0
10

30
50

Cluster Dendrogram

hclust (*, "ward.D2")
Hierachical cluster using Ward

H
ei

gh
t

cluster <- cutree(model_Ward, k = 5)
cc_general_norm_cluster <-cbind(cc_general_norm, cluster)
library(rattle)

12

cc_general_center <- centers.hclust(cc_general_norm,
model_Ward,
nclust = 5,
use.median = FALSE)

As in k-means, we can see the properties of the centers cluster in the following graph:

barplot(t(cc_general_center),
beside = TRUE,
main = "Center by cluster Hierarchical Classification",
col = palette,
ylim = c(0, 1.9)
)

abline(h = 0.5, col = 3, lty = 3)
text(5, 0.55, labels= "Center > 0.5", col = "blue", adj = c(0, 0), font=2, cex= 0.8)
legend("topright",

legend = colnames(cc_general_center),
fill = palette, ncol = 2,
cex = 0.6)

Center by cluster Hierarchical Classification

0.
0

0.
5

1.
0

1.
5

Center > 0.5

BALANCE
BALANCE_FREQUENCY
PURCHASES
ONEOFF_PURCHASES
INSTALLMENTS_PURCHASES
CASH_ADVANCE
PURCHASES_FREQUENCY
ONEOFF_PURCHASES_FREQUENCY
PURCHASES_INSTALLMENTS_FREQUENCY

CASH_ADVANCE_FREQUENCY
CASH_ADVANCE_TRX
PURCHASES_TRX
CREDIT_LIMIT
PAYMENTS
MINIMUM_PAYMENTS
PRC_FULL_PAYMENT
TENURE

For interpretation of the results, we can use the radar chart

• In cluster 1, the most important variables are balance and cash advance.
• In cluster 2 the most important variable is purchase frequency.

13

• In cluster 3 the most important variable is One-off purchase frequency.
• Cluster 4 has the highest influence on several of the variables.
• Cluster 5 has the influence of the variable PRC_Payments.

radar graph
center <- as.data.frame(cc_general_center)
maximos <- apply(center,2,max)
minimos <- apply(center,2,min)
center <- rbind(minimos,center)
center <- rbind(maximos,center)
colnames(center) <- c("BAL", "BAL_FREQ", "PURCH", "ONEOFF_PURCH","INST_PURCH.",

"CASH_ADV", "PURCH._FREQ", "ONEOFF_PURCH_FREQ",
"PURCH_INSTALL_FREQ","CASH_ADV_FREQ", "CASH_ADV_TRX",
"PURCH_TRX", "CRED_LIM", "PAY", "MIN_PAY", "PRC_PAY", "TENURE")

library(fmsb)
radarchart(center,

maxmin = TRUE,
axistype = 4,
axislabcol = "slategray4",
centerzero = FALSE,
seg = 8,
cglcol = "gray67",
pcol= palette,
plty = 1,
plwd = 5,
title = "Cluster comparation Hierarchical Classification")

det_radar <-legend(1.5,1, legend=c("Cluster 1","Cluster 2","Cluster 3",
"Cluster 4", "Cluster 5"),

seg.len=-1.4,
title="Cluster",
pch=21,
bty="n" ,lwd=3, y.intersp=1, horiz=FALSE,
col= palette
)

14

Cluster comparation Hierarchical Classification

0.00
0.12
0.25
0.38
0.50
0.62
0.75
0.88
1.00
BALBAL_FREQ

PURCH

ONEOFF_PURCH

INST_PURCH.

CASH_ADV

PURCH._FREQ

ONEOFF_PURCH_FREQ
PURCH_INSTALL_FREQCASH_ADV_FREQ

CASH_ADV_TRX

PURCH_TRX

CRED_LIM

PAY

MIN_PAY

PRC_PAY
TENURE

Cluster

Cluster 1
Cluster 2
Cluster 3
Cluster 4
Cluster 5

15

References

Hastie T., Tibshirani R., Friedman J. 2008. The elements of Statistical Learning. Springer.

16

	Introduction
	Techniques
	Analysis
	Exploratory Analysis
	K-means
	Hierachical cluster

